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Abstract: in this paper we discuss various classes of solution 

sets for linear interval systems of equations, and interval 

linear programming problems. And their properties, in this 

model we let the coefficient matrix and the right vector 

hands and the cost coefficient are interval. Interval methods 

constitute an important mathematical and computational 

tool for modeling real-world systems (especially 

mechanical) with bounded uncertainties of parameters, and 

for controlling rounding errors in computations. They are in 

principle much simpler than general probabilistic or fuzzy 

set formulation, while in the same time they conform very 

well to many practical situations. Linear interval systems 

constitute an important subclass of such interval models, 

still in the process of continuous development.  
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I.   INTRODUCTION 

In many real-life problems we deal with a mathematical 

programming problem. In conventional mathematical 

programming coefficient of problem are usually determined 

by the experts as crisp values. But in reality in an imprecise 

and uncertain environment, it is an unrealistic assumption 

that the knowledge and representation at an expert are so 

precise. Then we know, at best, the intervals of possible 

values. Thus it is desirable to analyze how the 

corresponding mathematical results will look if we replace 

numbers by intervals. 

Let     , : ,a a a x a x a x R     , 

Where a and a are the left and right limits of the interval a  

on the real line R , respectively. We shall use the terms 

"interval" and "interval number" interchangeably. If
 

a a a  , then   ,a a a is a real number. We use 

IR to denote the set of all interval numbers on the real 

line R . Interval arithmetic was first suggested by Dwyer [1] 

in 1951. Development of interval arithmetic as a formal 

system and evidence of its value as a computational device 

was provided by Moore [2]. After this motivation and 

inspiration, several authors such as (Alefeld and Herzberger 

[3], Dubois et al [4], Hansen [5], 

 In order to develop good mathematical programming 

methodology interval approaches are frequently used to 

describe and treat imprecise and uncertain elements present 

in a real decision problem. Linear systems of equations are 

among the most frequently used tools in applied 

mathematics. The solution to linear systems of equations is 

prone to errors due to the finite precision of machine 

arithmetic and the propagation of error in the initial data. If 

the initial data is known to lie in specified ranges then 

interval arithmetic enables computation of intervals 

containing the elements of the exact solution.  

 Solution of linear interval system of algebraic equations is a 

challenging problem in interval analysis and robust linear 

algebra. This problem was first considered at the middle of 

1960s by Oettli and Prager[6] and was pointed out as very 

important for numerous applications. Since that, this 

problem has received much attention and was developed in 

the context of modeling of uncertain systems (see [7]). 

Consider a system of linear algebraic equations 

 

Ax b                                   (1) 

 

with nx R , interval matrix n nA IR  and interval vector 

nb IR . The matrix and vector are said to belong to 

interval family if their elements are from some real intervals 

[a; b], a ≤ b. Here the standard notations IRn×n and IRn are 

used for sets of all n-dimensional interval square matrices 

and vectors, respectively. System (1) is called the interval 

system of equations. 

 

II.   INTERVAL ARITHMETIC 

 

The main principle of interval arithmetic is to replace every 

real number by an interval enclosing it and whose bounds 

are representable by the computer [5] For instance, π can be 

represented by the interval [3.14159, 3.14160] if 6 

significant radix-10 digits are used Data known with some 

degree of uncertainty can also be represented, for instance 

data measured with bounded measurement errors. Interval 

vectors and interval matrices are vectors and matrices with 

interval components .The major advantage of this arithmetic 

is the fact that every result is guaranteed. 
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III.   BASICS TOOLS 

An interval    ,X x x  is a closed and connected subset 

of R ; it may be characterized by its lower and upper 

bounds x  and x  or equivalently by its center  

 

  
 

( )
2

c m x
x x

x 




 

 

and width  ( )w x x x  .Arithmetical operations on 

intervals can be defined by   

 

          , , , / , ,x y x y x x y y       
  

Obtaining an interval corresponding to    x y is easy for 

the first three operators as

    , ,  , ,x y x y x y x yx y x y                    

    min( , , , ), max( , , , )x y xy xy xy xy xy xy xy xy     For 

division, when ,0 y    

 

     / min( / , / , / , / ), max( / , / , / , / )x y x y x y x y x y x y x y x y x y and 

extended intervals have to be introduced 

when ,0 y   see[6]. 

More generally, the interval counterpart of a real-valued 

function is an interval-valued function defined 

as                       ( ) ,f x f x x x  
   

Where  S  is the interval hull of S , i.e., the smallest 

interval that contains it. Intervals to continuous elementary 

functions are easily obtained. For monotonic functions only 

computations on bounds are required. 

      

      

      exp x = exp x ,exp x ,

      log x = log x ,log x  if x>0

  

  

 

For non-monotonic elementary functions, such as the 

trigonometric functions, algorithmic definitions are still 

easily obtained. For instance, the interval square function 

can be defined by 

 
   

   

2 2
0, max , , 0

2

2 2 2 2
min , , max ,

x x if x

x

x x x x else





  
  
 
  
  

 

For more complicated functions, it is usually no longer 

possible to evaluate their interval counterpart, hence the 

importance of the concept of inclusion function. An 

inclusion function   .f  for a function  .f  defined over 

a domain D R  is such that the image of an interval by 

this function is an interval, guaranteed to contain the image 

of the same interval by the original function: 

                ,           2 .x D f x f x    

This inclusion function is convergent if 

       lim 0
0

w f x
w x  




 and inclusion 

Monotonic              .if x y f x f y    

Various techniques are available for building convergent 

and inclusion-monotonic inclusion functions. Among them, 

the simplest is to replace all occurrences of the real variable 

by its interval counterpart which results in what is called a 

natural inclusion function. 
          

       Example 3.1 Consider the function 

 

            
   

            

           

 

2
( ) 3 exp( ) .

     is

2
          3 exp

   0,1 ,

2
                 0,1 0,1 3 0,1 exp 0,1

                  = 0,1 3 0,1 1, 0,1 3 , 0

                     0,1 0, 3

f x x x x

An inclusion function for f

f x x x x

Evaluate f over

f

e e

e

  

  

  

    

       

      

       

1 0, 3 1 0, 9.16

 

                    0,1 3, 2 3 3, 6.16

 ,   0,1  0,1

e

compare with

f e

of course f f

   

   



When 

the inclusion in (2) becomes an equality, the inclusion 

function is minimal. Usually, some pessimism is introduced 

by the inclusion function, as in example3.1 

This pessimism is due to the fact that each occurrence of the 

interval variable is considered as independent from the 

others. Various approaches may be considered to reduce 

pessimism. A first one is to reduce the number of 

occurrences of the variable by symbolic manipulations. 
 

 

IV. LINEAR SYSTEMS OF EQUATIONS 

 

The detailed description of the solution set for linear 

interval systems was given in the pioneer work by Oettli and 

Prager [6] for general situation of interval uncertainty, their 

result is reduced as follows. 

We assume that A is nonsingular, in which case the solution 

x exists and is unique. Now, suppose that the elements in A 
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and b are uncertain, but we know bounds for each of them. 

We can use these bounds as end points of intervals, and 

replace (1) with 
             (1.1)AX b  

Where A  and b are the interval matrix and vector as 

described above, and we  
n

X IR  that contains the solution 

to every problem en-compassed in (1.1). We assume that A 

is regular, meaning that every real matrix contained in A is 

nonsingular. 
EXAMPLE 4.1 

     

     

2, 3 1, 2 3, 41 2

1, 3 4, 6   2, 41 2

x x

x x

  

 
 

               

A vector  ,1 2x x x X  must satisfy both equations. The 

first equation can be reformulated to 

 

             2, 3 3, 4 1, 2 ,1 2x x    

which has the solution 

3 1 3
, 2    for   2 2 2

2 2 2

2 1 3
1 , 2   for  02 2 2

3 2 2
1 1

1 , 2   for  02 2 2
3

3 1
, 2    for   32 2 2

2 2

x x x

x x x

x

x x x

x x x

  

   



    

  

  
   

 
  

 
   

  
   

 

Similarly, we find that the points satisfying the second 

equation are given by 
 

1 3 2 1
,    for 4   1 1 1

2 4 3 6

1 3 1 2
,1    for 4   1 1 1

2 4 4 3
2 1 3 1 2

,1    for 4   1 1 1
2 4 4 3

1 3 1 2
,1    for 4   1 1 1

2 4 4 3

x x x

x x x

x

x x x

x x x

  
    

 
 

     
 

       

 
    

 

 

The set of solutions to the system is the intersection of the 

two domains illustrated in the figureIV.1 

 
FigureIV.1. the set of solutions 

 

we cannot give such a figure as the result, but have to make 

do with the interval hull, marked by the discontinued 

rectangle  in the figure. Thus, the system has the solution 

 
 

0.4, 6

4, 0, 9
X 



 
 
   

 

A.   GAUSSIAN ELIMINATION 

An obvious approach is to use a generalization of Gaussian 

elimination adapted to deal with interval coefficients. A 

triangular system can be formed in the usual way but with 

interval arithmetic. By the inclusion property, the solution 

of this triangular system will give an inclusion of the 

solution set. 

The usual care has to be taken with division by zero. 

Column magnitude pivoting can be used to choose a pivot 

as the contender with the largest magnitude, where we recall 

that the magnitude of x is defined as 

 

An implementation written in INTLAB [13] of interval 

Gaussian elimination with magnitude pivoting is given by 

the function intgauss.m[8] . 

When interval Gaussian elimination is applied to a general 
n×n n

A IR  and b IR  problems are soon encountered as n 

is increased. 

The vector interval obtained by applying a Gaussian 

elimination algorithm to the system defined in the 

exampleIV.1 is 

 
 

1.5, 6

4, 3.0001
X






 
 
 

 

 As interval calculations are carried out in the Gaussian 

elimination process the widths of the interval components 

grow larger due to the nature of interval arithmetic. If a 

solution is obtained then it is likely that the width of the 
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components is very large. Alternatively, at some stage in the 

Gaussian elimination process all contenders for pivot, or the 

bottom right element in the upper triangular system, contain 

zero, which causes the algorithm to break down due to 

division by zero [9]. 

The feasibility of using intgauss.m depends on the 

matrix
n×n

A IR  . For a general A, problems may occur for 

dimensions as low as n = 3 if the radii of the elements are 

too large. As the width of the elements decreases the 

algorithm becomes feasible for larger n. However, even 

when intgauss.m is used with thin matrices, it is likely for 

the algorithm to break down for n larger than 60. 

Despite interval Gaussian elimination not being effective in 

general, it is suitable for certain classes of matrices. In 

particular, realistic bounds for the solution set are obtained, 

for M-matrices, H-matrices, diagonally dominant matrices, 

tridiagonal matrices. In the case where A is an M-matrix the 

exact interval hull   is obtained for many b; Neumaier [7] 

shows that if 0, 0  0b b or b    then the interval hull of 

the solution set is obtained. 

 
B.   KRAWCZYK’S METHOD 
 

The linear interval system  AX b  can be preconditioned 

by multiplying by a matrix.
n n

C R


 . Here, we choose C to 

be the inverse of the midpoint matrix of A, which often 

leads to the matrix CA being an H-matrix. If this is the case 

then Gaussian elimination can be used, but it is quicker to 

compute an enclosure of the solution by Krawczyk's 

method. 

Assuming an interval vector 
 i

x is known such that 

   
,

i
A b x   then 

   1 1
( )

i
A b Cb I CA A b Cb I CA x
 

       

Holds for all     A A and b b so that   

   
       

, , ( )
i

A b x
i i

A b Cb I CA x x        This 

gives the Krawczyk iteration 

       1
( )

i i i
x Cb I CA x x


     

To start the iteration we require an initial vector 
 0

x  such 

that the solution 
   
0

,x A b
 

 

 

C.   Determinant method 

 

Theorem: Let Ax b  be a system of linear equations 

involving interval numbers. If the (n × n) interval matrix A 

is invertible, then it is possible to find a smallest box 

( , , , ......,  )1 2 3x x x xnx which containing the exact solution 

of the system  1 . Where each   

 i
A

xi
A



 
 

 
i

A

  

is the interval matrix obtained when the it column of 

A  is replaced by the vector ( , , ...., )1 2b b b bn
,

 i
A

 
and A  

are the ad joint matrix  and the  determinant matrix of   A 

respectively  . 

Example 5: We consider an example given in Ning et al 

[12]. 

The system of interval equations AX b  be given  

with   

     
     
     

3.7, 4.3 1.5, 0.5 0, 0

1.5, 0.5 3.7, 4.3 1.5, 0.5

0, 0 1.5, 0.5 3.7, 4.3

A

 

    

 

 
 
 
 

and 

 
 
 

14, 0

9, 0

3, 0

b



 



 
 
 
 

. 

Here    |A|=  37.103, 74.89   | | 0and A   

Now
 

     
     
     

14, 0 1.5, 0.5 0, 0
1

| | 9, 0 3.7, 4.3 1.5, 0.5

3, 0 1.5, 0.5 3.7, 4.3

A

  

   

  

 
 
 
 

 

                     = 249, 0 , 

 
     
     
     

3.7, 4.3 14, 0 0, 0
2

| | 1.5, 0.5 9, 0 1.5, 0.5

0, 0 3, 0 3.7, 4.3

A



     



 
 
 
 

 

                       

                    = 212, 0 and 

 
     
     
     

3.7, 4.3 1.5, 0.5 14, 0
3

| | 1.5, 0.5 3.7, 4.3 9, 0

0, 0 1.5, 0.5 3, 0

A

  

   

  

 
 
 
 

 

                    = 98, 3 . 

Then by the above theorem we see that 

 
 

 
249, 0

4, 482, 01
37.103, 74.89

x


   , 

 
 

 
212, 0

3.816, 01
37.103, 74.89

x


   and 
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 
 

 
98, 0

1.776, 0.0061
37.103, 74.89

x


   . 

In this case, the solution set is 

 

 

 

1

2

3

4, 482, 0

3.816, 0

1.776, 0.006

x

x x

x







  
  

    
   
   

. 

Using interval Gaussian elimination with interval 

arithmetic. 

[   -5.7081,    0.6415] 

[   -4.7466,    0.0000] 

[   -2.7351,    0.0000] 

x 

 
 
 
 

. 

Using interval hull method with interval arithmetic we 
obtained the solution set (much wider) 

[   -5.7770,    1.4437] 

[   -4.8173,    1.4840] 

[   -2.7921,    1.2088] 

x 

 
 
 
 

 

It is to be noted that the solution set obtained by using   

interval approach developed by determinant method is 

sharper then the solution sets obtained by other techniques. 

              

 

V. CONCLUSION 

 

Intervals containing the elements of the exact solution.  

 The solution set obtained by using interval approach 

developed by determinant method is sharper then the 

solution sets obtained by other techniques using interval 

arithmetic. 
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