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Abstract- Design of an observer based controller for a class of 
fractional order systems has been done. Fractional order 
mathematics is used to express the system and the proposed 
observer. Fractional order Lyapunov theorem is used to derive 
the closed-loop asymptotic stability. The gains of the observer 
and observer based controller are derived systematically using 
the linear matrix inequality approach. Finally, the simulation 
results demonstrate validity and effectiveness of the proposed 
observer based controller. 

Keywords- Fractional order calculus, Fractional order 

observer, Linear matrix inequality, Nonlinear Systems, 

Observer based Controller.  

 

I.  INTRODUCTION 

Fractional order calculus, an old mathematical topic from the 

17th century, has recently attracted a rapid growth in the 

number of applications where fractional calculus has been 

used [1]-[5].  

The design of state estimators is one of the essential points 

in control theory and the observer-based control is usually 

applied when we do not have access to all the states of a 

system [6]. There are a few researches on the fractional order 

observer based controls of the fractional order system, Both in 

linear case [6], [7] and nonlinear ones [7]. Some papers 

introduced synchronization of chaotic systems using observer 

[8-11]. Almost all of the previous work has ignored 

nonlinearity or removed it by use of the designed controller. 

 The major difficulties in the design of practical observers 

for dynamical systems are their nonlinear dynamics which 

may results in failure of practical use of previous methods. 

This means that designing fractional observer or observer 

based controller for nonlinear fractional order systems are still 

an open problem. 

To the best of our knowledge, [7] is the lone reference that 

introduced designing observer based controller for nonlinear 

affine fractional order systems by considering nonlinearity 

that used Gronwall Bellman lemma in the proof procedure. 

This reference has considers some assumptions on nonlinear 

function and state's initial condition besides a complex 

stability proof that restrict its usage.  

Besides, for extending the application of fractional calculus 

in nonlinear systems, [12] propose the fractional Lyapunov 

direct method with a view to enrich the knowledge of both 

system theory and fractional calculus. The main interest of 

Lyapunov’s approach is to define Linear Matrix Inequalities 

(LMIs) conditions. But it is also well known that Lyapunov’s 

technique is the fundamental tool to analyze the stability of 

nonlinear systems [13].  

In this paper we consider Lipschitz nonlinear fractional 

order systems. Our objective is to find an observer based 

controller that stabilizes the state estimation error. An LMI 

based observer gain for this class of nonlinear systems has 

derived using fractional direct Lyapunov theorem. 

This paper is organized as follows: Section II provides 

preliminary definitions. In section III, the nonlinear fractional 

order observer is given and the design procedure for observer 

based controller is discussed. Numerical example is provided 

in section IV and finally, the conclusion remarks are given. 

II. PRELIMINARY DEFINITIONS 

In this section we recall the main definitions and results 

concerning fractional calculus.  

Definition 1: [2], [14] One of the basic functions of the 

fractional calculus is Euler's Gamma function which is defined 

by 


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which converges in the right half of the complex plane. 

Definition 2: [2], [14] The q th-order Riemann-Liouville 

fractional derivative of function )(tf  with respect to t and the 

initial value a is given by 
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where m is the first integer larger than q ,  i.e.
 

mqm 1

and   is the Gamma function. 

Remark 1: The q th-order fractional derivative of function 
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2)())(( txtxf   with respect to t is given by [15], 
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We can consider the following boundedness condition: 
2

xpx                                   (5) 

Lemma 1 (Schur complement): [16] The LMI: 
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Where
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Lemma 2: [17] Let x, y be real vectors of the same 

dimension. Then, for any scalar 0 , the following 

inequality holds: 

yyxxyx TTT 1              (8) 

Lemma 3 (Fractional Lyapunov direct method): [12], [18] 

Let 0x  be an equilibrium point for the non-autonomous 

fractional order system ),()(0 xtftxDq

t  . Assume that there 

exists a Lyapunov function ))(,( txtV  and class-k functions 

)3,2,1( ii satisfying 

)())(,()( 21 xtxtVx                                             (9) 

and 

)())(,( 30 xtxtVDt            (10) 

where )1,0(  Then we have 0)(lim 


tx
t

. 

 

III. OBSERVER BASED CONTROL FOR LIPSCHITZ 

FRACTIONAL ORDER NONLINEAR SYSTEMS  

 

Consider a nonlinear fractional order system of the form: 

Cxy

uxBuAxxDq



 ),(
                  (11) 

where
nx  , 

qu  ,  and 
my  are the state, input, 

and output, respectively, 
nmC   is constant matrix and 

nqn  ][:  is nonlinear function that 

0),0( u  and this function is Lipschitz in x  with 

Lipschitz constants  , i.e.:  

2121 ),(),( xxuxux            (12) 

A nonlinear fractional order observer is introduced as: 

xCy
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where x̂  is the state estimation and L is the proportional 

observer gain Then, the observer error dynamic equation is 

obtained as: 

),ˆ(),(~)(~
0 uxuxxLCAxDq

t             (14) 

xxx ˆ~   is the state estimation error. 

 In the continue, we study both observation and stabilization 

of (11) by choosing xKu ˆ in which K  is the state feedback 

gain. The following theorem provides sufficient conditions for 

the stability of the proposed nonlinear observer based 

fractional order controller. 

Theorem: The observer based control xKu ˆ  has a stable 

observation and stabilization for the nonlinear system (11) if 

there exist positive real number 1 and matrix
nK  1

 while 

the proportional observer gain 
mnL  is the solution of the 

following constrained LMI: 
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while BKAA 1 , LCAA 2 ,  


1

1

1  

and   is a positive constant scalar given in (5). 

Proof: Consider the following Lyapunov function 

candidate: 

XXV T                          (16) 

where  TxxX ~  and we want to investigate stabilization 

of that. By stabilizing X , both x  and x~  will be stabilize and 

this means robust observation besides stabilization of (11). 

Taking the derivative of (16) and using (3), (11) and (14), 

results in: 
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Using xKu ˆ , (17) will simplify as:  
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Applying Lemma 2 on the second term, with 1  result in: 
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Considering (12), the inequality (19) can be rewritten as 

bellow:  
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Then using (5) in (20) follows that: 
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Since  

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Using fractional direct Lyapunov method, the sufficient 

conditions for asymptotically stability of X is choosing 

LK ,   and 1 that causes .0
~

1 A  

Matrix 1

~
A is not a symmetric matrix thus it cannot be 

converted to LMI by using Lemma 1. In the continue we 

overcome this problem by replacing 1

~
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~
A  while
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To proof the equality of XAXXAX TT

21

~~
 , appendix I can 

be used.  

The new condition for asymptotically stability of X is 

choosing LK ,   and 1 that causes 0
~

2 A which yields LMI 

(15).  

IV. NUMERICAL EXAMPLE 

Ninteger is a toolbox for Matlab intended to help 

developing fractional order controllers and assesses their 

performance [19]. In this part we introduce a numerical 

example and use the Matlab/Simulink environment to 

investigate the proposed observer based controller.  

Consider the following unstable nonlinear fractional order 

system:  
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 While 
Txxxx ],,[ 321  and .8.0q The design 

parameters are chosen as 7.0 , 2.0 .  

Observer (13) with  TL 438.43  109.77  0.87  and 

observer based controller xKu ˆ  with  

 8.63-   2.16-  0.045-K
 
is analytically stable by 

theorem 1 while 0.691   . 

The simulation results for system (25) are shown in Fig. 1, 

2 and 3 since the observer is activated at
 

st 2  and observer 

based controller is triggered at st 3  . 

Fig 1 shows the state estimates in the proposed method 

since Fig 2 shows the errors of state estimations. 

 
FIG 1. ACTUAL STATES (LINE), STATE ESTIMATIONS (DASHED). 
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FIG 2. ERRORS OF STATE ESTIMATIONS USING OBSERVER. 

 

As is shown, although the system (25) is unstable, the gain 

obtained from the proposed observer design causes the 

estimator to accurately track the system states and the 

proposed controller can stabilize this system with a small 

settling time. 

Outputs of the system and its observer are shown in fig 3.
 
 

 
FIG 3. OUTPUT SIGNAL OF SYSTEM (LINE) AND OBSERVER'S OUTPUT 

(DASHED). 

 

Fig 3 illustrates the efficiency of the observer for st 2 and 

the proposed observer based controller besides the observer 

for .3st   

CONCLUSION 

We proposed to design a fractional order observer based 

controller for a class of nonlinear fractional order systems 

using LMI and fractional order direct Lyapunov theorem.  

The proof procedure is explained in detail. Under our 

scheme, a simple linear controller is used for stabilizing 

Lipschitz nonlinear systems. Furthermore, the performance of 

the design, both for observation and control, is satisfactory 

with acceptable settling that shown in simulation.  

 

APPENDIX I 

For any x  and Q  we have
 

RQxxT   and
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This implies that: 
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Using (27) will simplify (28) as:  
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