

109

International Journal of

Science and Engineering Investigations vol. 1, issue 1, February 2012

Reducing Development Time Using Automated Data Transfer

Object

 Amir Hooshangi

(amirhoshangi@gmail.com)

Abstract-Software development time is one of the most

important metrics in software industry which involves

management, marketing, development teams and other vital

part of the software companies. There are different factors

on reducing Development time but automation and code

generation are among well-grounded techniques that have

been used widely. In this paper we focus on Data transfer

object (DTO) in software Construction phase. While our

main goal is reducing development time by Automating

DTO design pattern we’ve studied effects of using DTO's

on refactoring and design flaws. We’ve compared the

development time by using Light weight API which

automates the process in Large scale Java Enterprise

Application.

Keywords-design-patterns;development-time;code-

generation

I. INTRODUCTION

 Object oriented Applications participate in major fields

of computing today. These systems are widely used in

distributed computing, web technologies and many other

systems. Design patterns as vital building blocks of object

oriented applications are noticeable. We've found that

design patterns can be used to record and encourage the

reuse of best practices [7]. Data transfer Object (DTO)

design pattern has been used in different Java Enterprise

Technologies such as EJB, Web services, file upload

programs and Java messaging service [3]. One of the unique

aspects of DTO in compared with other design patterns is

that it heavily effects the implementation phase while it's

like other design patterns in architecture point of view.

While automation is not a general solution to all fields of

software, studying the nature of DTO will show that using

DTO in automated way is a better approach in compare with

the manual way. As [8] claims it’s due to the abstract level

of design patterns which makes the application of design

patterns a human dependent task. Beside development time

there are other issues with DTO like refactoring and design

flaws. We developed a light weight API for automating the

process in our experimental study using Java 6.

The definitions below would help to better understanding of

this paper:

 Software construction: different activities in

software engineering which results the creation

and maintaining software [10].

 DTO converter utility methods: DTO object

carries the values of other objects and classes in its

life cycle. Converting the values of main object to

DTO's and vice versa for transferring DTOs could

be done by using utility methods. Look at figure 3

which is sample UML class for a Student object.

We’ve used Student class as an example for more

clearance.

 POJO: Plain old java objects.

II. DTO CHARACTERISTICS

 As figure 1, 2 shows DTO classes (in most cases) are

simple data containers which being used to transfer data in

different layers of application. A DTO class also has been

used to implement Java Comparable
1
 interface or having

hash methods in some cases [4]. As shown in figure 4, 5 the

scenario of using DTO summarizes in following steps:

 DTO classes are replica of an object (Bean or any

POJO) which calls BeanDTO (ObjectDTO) and

could have all or some of main Bean fields (based

on network overheads or requirements).

 Business object is responsible for converting

BeanDTO (ObjectDTO) field values to main bean

(object) and vice versa and sends them to other

layers of application. Look at Figure Implementing

these converter methods could be time consuming

task in large scale applications.

 Previous steps repeats between different layers and

business object.

 1- For more information look at [12]

mailto:amirhoshangi@gmail.com

International Journal of Science and Engineering Investigations, Volume 1, Issue 1, February 2012

110

www.IJSEI.com Paper ID: 10112-22

Software developers have strong tendency to reuse designs

that worked well for them [7]. Repeating these steps for

every needed Bean (Object) causes wasting lots of time.

A. DTO In EJB Applications

 In EJB applications business object differs if it's Entity

Bean or Session Bean [5]. In this case we have update

transfer object strategy (figure 6) and multiple transfer

object strategy (figure 7). These strategies have effects just

on the business logic of application and not on the process

of using DTO.

Figure 1. Student class and StudentDTO class modeled in UML.

public class Student {

 int id;

 String name;

 public int getId() {

 return id;

 }

 public void setId(int id) {

 this.id = id;

 }

 public String getName() {

 return name;

 }

 public void setName(String name) {

 this.name = name;

 }

}

public class StudentDTO {

 int idDTO;

 String nameDTO;

 public int getIdDTO() {

 return idDTO;

 }

 public void setIdDTO(int id) {

 this.idDTO = id;

 }

 public String getNameDTO() {

 return nameDTO;

 }

 public void setNameDTO(String name) {

 this.nameDTO = name;

 }

}

Figure 2. Java codes for figure 1.

III. DTO AND ISSUES WITH REFACTORING, DESIGN

FLAWS AND ERROR PRONE CODE.

A. Refactoring

 DTO has a tendency to change often [5]. Changing DTO

classes in different construction phase affects other layers

and units of application like test units, logic and etc. There

are two reasons why DTO's changes a lot:

 Unclear requirements: in some situations

requirement is not clear and causes to

redesigning bean classes. These changes make

the time consuming process.

 Naming’s and coding styles: changing field

and class names happens a lot in construction

phase which affects the DTO classes.

public class StudentUtilityConverter {

public StudentDTO convertStudentToStudentDTO

(Student student) {

 StudentDTO stdDTO = new StudentDTO();

 stdDTO.setIdDTO(student.getId());

 stdDTO.setNameDTO(student.getName());

 return stdDTO;

 }

public Student convertStudentDTOToStudent(StudentDTO

studentDTO) {

 Student std = new Student();

 std.setId(studentDTO.getIdDTO());

 std.setName(studentDTO.getNameDTO());

 return std;

 }

}

Figure 3. java studentDTO converter utility class.

International Journal of Science and Engineering Investigations, Volume 1, Issue 1, February 2012

111

www.IJSEI.com Paper ID: 10112-22

B. Error Prone Code

 Changing Bean classes and applying them to DTO's and

converter utility classes is unstoppable cycle. This process

makes error prone code. The case would be worse in large

beans (with 20-30 Object properties).

Experimental study showed that it's a common mistake to

setX() and getY() wrong fields in large Objects. Finding

these bugs needs lots of effort because application must be

checked from presentation layer to data access layers to find

out where the wrong fields have been inserted.

Figure 4. Transfer Object class diagram.

C. Design Flaw

 It's a common mistake that GOF value object and DTO

has been used wrongly instead of each other by developers.

Also misunderstanding of DTO and assigning different

design roles
2
 (from other layers) causes couple and bad

designed code.

Figure 5. Transfer Object sequence diagram.

 2- Design roles which assigns to the objects and classes

by architecture.

IV. EXPERIMENTAL STUDY

 DTO side effects on small projects are not noticeable.

Studying and tracking the consumed times of our agile

teams which involved Large scale enterprise applications

(which used EJB and Web service technologies) showed

that DTO rises as a time consumer task in different

iterations of our construction phase such as requirements

changes, unit testing, refactoring and etc. we used our

lightweight API to re implementing the main parts of our

applications and tracking the time in every iteration. As

results showed, each team reported up to less 4 working

days which became noticeable in long term and different

iteration and phases. We are assured that there are several

benefits of using DTO in automated way over manual way.

V. IMPLEMENTATION DETAILS

 We developed our DTO code generator API using Java

JDK 6. For generating standard and well formatted code we

used Sun Code-Model [11] API. Developers are able to

generate DTO classes based on Entity Beans (any POJO) by

annotating required fields. By using Java reflection facilities

we generate converter utility and DTO classes. For better

Integration the API is also Apache Maven based.

Figure 6. Update transfer object strategy.

VI. RELATED WORKS

 Researchers [4] have gathered the useful information’s

about DTO characteristics and ways of identifying DTO’s in

enterprise applications by dynamic analysis. In [9]

researchers have measured the effects of design roles on

design on enterprise applications which describes the DTO

conflicts and design flaws. IBM [6] has developed code

generator for design patterns which supports C++ and

Smalltalk. HTTP protocol has been used for online

information’s. This application also uses Perl interpreter as

its engine. Indicated features are set of useful tools for

analyzing and implementing design patterns in academic

studies.

International Journal of Science and Engineering Investigations, Volume 1, Issue 1, February 2012

112

www.IJSEI.com Paper ID: 10112-22

In [8] researchers have proposed a design patterns

automation based on CBR
3
 which uses UML for modeling.

General approaches on design patterns are trade-off. Our

work specifically targets DTO and its main goal in

implementation is light weight, easy to use API for helping

agility in today development teams.

Figure 7. Multiple transfer object strategy.

VII. CONCLUSION AND FUTURE WORKS

 Our study showed that using DTO in automated way is

much more suitable than in manual way. In today agile

teams even one working day is noticeable. Beside this,

finding hidden time consumer parts of enterprise

applications and removing them can cause faster available

software to costumers. Future works includes improving

API to implement Java Objects equals () methods, hashing

algorithm and supporting other features like documentations

which would help DTO to be used much appropriately. Also

studying other design patterns with purpose of reducing

development time could be a good start to generalize our

approaches on design patterns.

REFERENCES

[1] Deepak Alur , Dan Malks , John Crupi, Core J2EE

Patterns: Best Practices and Design Strategies, Prentice

Hall PTR, Upper Saddle River, NJ, 200.

[2] http://java.sun.com/blueprints/corej2eepatterns/Patterns

/TransferObject.html.

[3] Matthew A. Brown & Avery Dennison Corporation &

The Pennsylvania State University CiteSeer Archives

(2003). Validation Strategy.

[4] Alexandar Pantaleev and Atanas Rountev. Identifying

Data Transfer Objects in EJB Applications. In WODA

’07: Proceedings of the 5th International Workshop on

Dynamic Analysis, page 5, Washington, DC, USA,

2007. IEEE Computer Society.

 3- Case Based Reasoning.

[5] F. Marinescu. EJB Design Patterns. John Wiley,

February 2002. Alexandar Pantaleev and Atanas

Rountev. Identifying Data Transfer Objects in EJB

Applications. In WODA ’07: Proceedings of the 5th

International Workshop on Dynamic Analysis, page 5,

Washington, DC, USA, 2007. IEEE Computer

Society.

[6] F. J. Budinsky , M. A. Finnie , J. M. Vlissides , P. S.

Yu, Automatic code generation from design patterns,

IBM Systems Journal, v.35 n.2, p.151-171,

1996 [doi>10.1147/sj.352.0151] .

[7] Kent Beck , Ron Crocker , Gerard Meszaros , John

Vlissides , James O. Coplien , Lutz Dominick , Frances

Paulisch, Industrial experience with design patterns,

Proceedings of the 18th international conference on

Software engineering, p.103-114, March 25-29, 1996,

Berlin, Germany .

[8] P. Gomes, F.C. Pereira, P. Paiva, N. Seco, P. Carreiro,

J. L. Ferreira, and C. Bento. Using CBR for Automation

of Software Design Patterns. Lecture Notes in

Computer Science, pages 534--548, 2002.

[9] Cristina Marinescu. Identification of design roles for

the assessment of design quality in enterprise

applications. In Proceedings of International

Conference on Program Comprehension (ICPC 2006),

pages 169–180, Los Alamitos CA, 2006. IEEE

Computer Society Press.

[10] Steve McConnell, Code complete: a practical

handbook of Software construction, Microsoft Press,

Redmond, WA,1993.

[11] http://codemodel.java.net/

[12] http://download.oracle.com/javase/6/docs/api/java/lang/

Comparable.html.

Amir Hooshangi (born 31 Jan 1989) Tehran,

Iran. Bachelor of Science in software engineering

2006-2010 Karaj Payame Noor university of Iran.

Member of Iran community of software and math

researches. My major interests in researching are

how to build the robust software in an efficient

way which includes development teams, project

management, software metrics etc. I’m currently working as senior

J2EE developer and researcher in Iran telecommunication research

center.

http://dl.acm.org/citation.cfm?id=558951&CFID=47389583&CFTOKEN=62743436
http://dl.acm.org/citation.cfm?id=558951&CFID=47389583&CFTOKEN=62743436
http://dl.acm.org/citation.cfm?id=558951&CFID=47389583&CFTOKEN=62743436
http://java.sun.com/blueprints/corej2eepatterns/Patterns/TransferObject.html
http://java.sun.com/blueprints/corej2eepatterns/Patterns/TransferObject.html
http://dl.acm.org/citation.cfm?id=228894&CFID=47389583&CFTOKEN=62743436
http://dl.acm.org/citation.cfm?id=228894&CFID=47389583&CFTOKEN=62743436
http://dl.acm.org/citation.cfm?id=228894&CFID=47389583&CFTOKEN=62743436
http://dl.acm.org/citation.cfm?id=228894&CFID=47389583&CFTOKEN=62743436
http://dx.doi.org/10.1147/sj.352.0151
http://dl.acm.org/citation.cfm?id=227747&CFID=47389583&CFTOKEN=62743436
http://dl.acm.org/citation.cfm?id=227747&CFID=47389583&CFTOKEN=62743436
http://dl.acm.org/citation.cfm?id=227747&CFID=47389583&CFTOKEN=62743436
http://dl.acm.org/citation.cfm?id=227747&CFID=47389583&CFTOKEN=62743436
http://dl.acm.org/citation.cfm?id=227747&CFID=47389583&CFTOKEN=62743436
http://dl.acm.org/citation.cfm?id=227747&CFID=47389583&CFTOKEN=62743436
http://dl.acm.org/citation.cfm?id=151071&CFID=47389583&CFTOKEN=62743436
http://dl.acm.org/citation.cfm?id=151071&CFID=47389583&CFTOKEN=62743436
http://codemodel.java.net/
http://download.oracle.com/javase/6/docs/api/java/lang/Comparable.html
http://download.oracle.com/javase/6/docs/api/java/lang/Comparable.html

