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Abstract- A method for an evaluation of thin-walled 

constructions fabricated of a composite material, a structure of 

which is a set of unidirectional reinforced layers of various 

orientations. A multi-layered hollow cylinder fabricated of a 

transversal-isotropic material with a given reinforcement 

structure is considered. It is demonstrated that the method, 

which is offered in this work for a calculation of load-carrying 

ability of multi-layered constructions, yields satisfactory 

results, which well agree with experimental data.  
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I.  Introduction  
 

     Results of researches [1] indicate that a characteristic 

damage of multi-layered composites with a transverse-

longitudinal and a quasi-isotropic placement of [0, 90] s ,  [0, 

90, ±45]S   layer types under conditions of tension is a 

formation of crack massive oriented at an angle to a direction 

of load action. As a rule, the formation of crack network 

occurs long before a total break of construction. In this case, a 

hardness of composite material decreases and fibres breaks, 

which are initiated by cracks in a matrix, decrease the load-

carrying ability and a service term of constructions fabricated 

of multi-layered materials. It is known that researches of 

reinforced multi-layered material strength are based on two 

approaches: a structural and a phenomenological one. As it 

was noted in [2], a modern state of structure approach to 

strength researches, which is employed in a micro-mechanical 

theory, does not allow reliable quantitative data for an 

evaluation of the composite strength. An analysis of strength 

criteria limitations and a description of destruction processes 

occurring in various composite materials are presented in 

fundamentals works [2, 3, 4]. As it was noted, a concentration 

of interlayer normal and tangent stresses near cracks at 

interface boundaries initiated a layering in adjacent regions. 

As a rule, to predict a layering initiation moment, all 

components of a three-dimension stressed state for a 

considered region of multi-layered composite are determined 

and the obtained values are substituted into the corresponding 

strength criteria. The layering is the most dangerous type of 

damage affecting a load-carrying ability of constructions, 

which are fabricated on the basis of composite materials. A 

number of known publications, which considered this problem 

[1], reported that researches of conditions of layering 

origination and the related stress redistribution were 

insufficient. 
 

II. STRESSED STATE OF MULTI-LAYERED 

COMPOSITES WITH INTERFACE DEFECTS OF 

MATERIAL STRUCTURE 
 

     Characteristic features of composite materials with a 

layered structure are a high strength in a direction of 

reinforcement and a low resistance to an in-plane shear and a 

transverse break. A unidirectional layer is a construction 

element of multi-layered plates and shells. Both in the process 

of exploitation and at a moment of its fabrication, the 

composite strength depends on a normal stress of transversal 

direction and a tangent stress of interface shear. In addition, 

the unidirectional layer strength towards the reinforcement is 

essentially higher than its strength directed perpendicular to 

the reinforcement. Thus, for example, a uniaxial tension of 

three-layer material, extreme layers of which were reinforced 

in a tension direction and a center was reinforced in an 

orthogonal direction (Fig. 1a), was considered in [2]. Every 

layer represented a unidirectional reinforced material. 

It was believed that the thickness of the outer layers of the 

same, i.e. )3()1( hh  , and strain 2211,   for all segments of the 

same. In the case of plane strain when 022  , stress and 

strain in the fibers in the direction of the OX axis is found 

from the equilibrium condition  
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Figure 1  The structure of a three-layer composite material 
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     Here )2(
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1 E,E  – elastic module of a unidirectional 

material, respectively, in the longitudinal and transverse 

directions; )2,1i(
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h
h

)2()1(

)i(
)i( 


   – the relative thickness 

of layers. A characteristic feature of modern unidirectional 

composite materials - a noticeable difference between the 

rigidity of such materials along and across fiber 

reinforcement. The obvious conclusion is that the destruction 

of the material considered     (Fig. 1 b) begins with the second 

layer. As follows from formula (1), the destruction of this 

layer occurs at stress 11 equal 
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     Where 


)2(
22 – tensile strength of the material in the 

transverse direction for the middle layer in tension. Solution to 

the problem [2] with the additional stresses caused by the 

formation of cracks is determined by the relations: 
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Parameters 1k  and 2k  equal 
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     In this case, axis ox coincides with the axis 01 analysis of 

the expressions (4) – (5) show that the stress )*2(
33  и )*2(

13  

decay rapidly with distance from the edge of the crack and 

when 2k/2x   practically zero. A similar distribution pattern 

are the stress )*2(
11 , when 2k/2x   asymptotically approaches 

the value )2(
11 . Thus, the maximum stress )*2(

11  occur at a 

distance 2k/  from the edge of the crack:  
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     Stress state of a single block of the middle layer length 

2k/  between adjacent cracks is described by the following 

expressions: 
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III. MODIFIED STRENGTH CRITERIUM FOR 

MULTI-LAYERED COMPOSITE WITH STRESS 

POINT AT LAYER INTERFACE 

 

     The most general formulation of the criterion of strength of 

anisotropic bodies is of the form 

   

  1... 




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
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mnklijijklmn

klijijklijij

R

RR
   

 3,2,1,...k,j,i  ,                                                       (8) 

     Where  ijklmnijklij R,R,R  – matrix notation of tensors of the 

surface strength of the second, fourth, sixth and subsequent 

even ranks. In engineering practice, more convenient in 

practical applications was the next criterion is the strength of 

the tensor-polynomial forms: 

1...RRR mnklijijklmnklijijklijij     

 3,2,1n,l,m,k,j,i  ,                                                            (9) 

     Which is easily obtained from (8), taking 1,...,,  . Most 

of the known polynomial strength criteria are usually a special 

case of criterion (9). Using the strength criterion (9) in the 

form of  

1RRR mnklijijklmnklijijklijij          
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     Let us consider a destruction condition of multi-layered 

composite as a whole. An assumption about an independent 

loading, a linear-elastic behavior of material, and about an 

absence of interaction between the layers reduced the number 

of strength tensors in an equation (10), which was derived for 

an orthotropic composite in a plane stress state, to ten. A 

criterion of layered composite strength (10) turned to be very 

complicated for a practical application, since to find tensor 

coefficients of the surface strength, one needed sophisticated 

experiments. In most cases a destruction of multi-layered 

composite material started from a destruction of one layer or a 

break of interface bonds. Therefore, the destruction is assumed 

to be localized in one layer and the strength criterion should 

be derived namely for this layer when an ultimate surface is 

calculated. An approximation of the ultimate surface strength 

for an orthotropic layer using a quadratic polynomial is 

considered in [5]. The equation (10) has the following form: 

1RR klijijklijij  ;  3,2,1l,k,j,i                           (11)                                                                   

     Where ijklij R,R  – tensors of the surface layer of the 

strength of the second and fourth orders. In the case of plane 

stress equation (11) represents the limit surface (ellipsoid) in 

three-dimensional stress space 

.14424

2

122222121211111222111122

2

121212

2

222222

2

111111121222221111









RRRR

RRRRR (12)                                       

     Coefficients of equation (12) are determined using the 

experimentally determined limiting strength characteristics 
  ijij ,   )2,1j,i(  . The index "+" means that this component - 

the ultimate tensile stress, the index "-" denotes the ultimate 

stress in compression. For the tensor components of the 

surface resistance (12) in [5] proposed the following 

relationship: ;R
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     The strength tensor in (12) and (13) takes into account a 

possible difference of strength characteristics of a material 

tension and a compression. We should like to note that the 

material strength does not depend on a sign of ultimate values 

of strength tangents, i.e.   1212 . In addition, an identity 

0RR 22121112   is valid for an orthotropic material in 

symmetry axes. Existing experimental values   ijij ,   

)2,1j,i(   are insufficient for a determination of components of 

strength tensors of 1122R  type, therefore, to obtain and 

validate an empirical dependence 1122R , a necessity to 

perform exactly planned experiments arises. As a rule, the 

majority of methods applied to construct an ultimate interface 

is based on an assumption that the reinforced material is a set 

of anisotropic layers, which in its turn, entails a study of 

properties of every individual layer under loading. A theory of 

layered medium enables a changeover from a composite 

averaged stress and deformation to a local stress and 

deformation in any layer. We should like to note that with the 

exception of some individual works, all approaches do not 

take into account a stress and a deformation in an in-plane 

shear   3i3i ,   )2,1i(   and a transversal break off or a 

compression   3333, . An essential difference in ultimate 

characteristics of load-carrying layer and properties of 

intermediate interface layer dictates a selection of one or 

another model of discrete-structure theory for a plane and a 

shell. It becomes evident that the layering should be 

considered not as an isolated type of destruction but as a 

factor, which determines a type of discrete-structural model 

for a multi-layered construction. In such a way, to evaluate an 

effect of weakened interface contact of layers, a criterion (12) 

should be written in a modified form. 
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     Where a tensor of the surface resistance (13) follows by 

analogy to add additional components: 

;R

3333

3333
33 






     ;

1
R

3333
3333  

     ;
1

R4

1313

1313  
    

;
1

R4

2323
2323  

  

 
;

1
RR

RR
R2

2

13

33331111

13

3311
1133








    

 223

33332222

23

3322
2233

1
RR

RR
R2








 .                             (15) 

     It is assumed that the interlayer shear strength of the 

material does not depend on the sign of the transverse shear 

stresses, i.e.   1313 ;   2323 . To use the modified criterion 

(14) and (15) to experimentally determine the limiting 

characteristics of the layer on the transverse shear and 

transverse compression or separation. 

 

IV. NUMERICAL RESULTS AND DISCUSSION 

 

     A three-layer material at the level of stress σ11 = 115 MPa , 

external layers of which have mh 3)1( 105.2   thickness, 

is considered. Its internal layer has 

мh 3)2( 105.02  thickness and physical-mechanical 

characteristics of transversal isotropic external layers are: 
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in transverse shear. As it follows from the expressions in (4) - 

(6) there are several possible options for the appearance of 

new cracks (Fig. 2). Cracks, which are parallel to an initial 

crack, are induced by a stress )*2(
11 . Additional cracks, which 

appear at a layer interface, are a result of transverse stress 
)*2(

13  and cracks at the interface between layers or within 

layers of the interlayer of the normal stresses )*2(
33 , as well as 

cracks in the second layer associated with the combination of 

stresses. 

 

 
Figure 2  State of stress in the crack 

 

Results of many experiments demonstrate that, as a rule, the 

first way of crack formation is more typical for the case of 

sample tension. In this case, a distance between cracks, 

according to (6), is equal to 2k/x  . An analysis of a stressed 

state of a block of adjacent layers was performed using (7). 

Plots of stress changes ,
)*2(

11  ,
)*2(

13  )*2(
33  over the block 

length are presented in Fig. 3.  A maximum stress value )*2(
11 , 

which is found in the block center at x = 0 (Fig. 3b), is equal 

to                     .     
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     A probability of crack formation of the first type at a 

subsequent loading remains still high. New cracks divided a 

layer into blocks, a length of which was approximately equal 

to 2k/5,0  . Figure 4 shows plots of stresses ,
)*2(

11  ,
)*2(

13  )*2(
33  

for a block of 2k/5,0   length. A comparison of Fig. 3 and 

Fig.4 indicates that an average distance between cracks 

decreased practically at the same )2(
11  value. An average 

distance between cracks is
)2()5.2...2( h . The second, third, 

and fourth way of new crack formation were developing 

simultaneously with the first one. This resulted in a formation 

of layering regions at an interface between the external and 

internal layer. An accent on two main types of damages (a 

matrix crack, which was located over a layer depth )2(h , in 

parallel to a transverse fiber and a layering), however, should 

not distract from an understanding that a finite reason of 

destruction of a layered composite material is a fiber break. 
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Figure 3  Stress state of a single block of the middle layer of length 

2/ k  

 
Figure 4  Stress state of a single block of the middle layer of length 

2/5.0 k  

 

     A stressed state of cylindrical sample made of glass 

reinforced plastic of 0.1m to 0.2m length, 0.09m diameter, and 

0.002m thickness was studied. The cylinder was made of four 

glass fabric layers TG 430 – C (100). A polyester 

orthophthalic resin Cristic 2 – 446 PA with a reduced sterol 

emission was used as a binder. Table 1 and Table 2 present 

physical-mechanical characteristics of studied glass-reinforced 

plastic samples [6]. 

 
TABLE 1 Experimental and theoretical values of elastic characteristics of 

the GRP. 
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



 

 

 

 
TABLE 2 Experimental values of limiting stresses GRP 

МPа

,2211

  

 
МPа

а
ср

,

 

МPа

,2211

  

 

МPа

а
ср

,

 

МPа

ии ,2211  

 

МPа

а
ср

,

 

 

200 

 

7 

 

180 

 

8 

 

160 

 

4 

 

     Table 2 presents a confidence interval of ultimate stress 

average value 
ср

а


 for a confidence 

probability 95.01  . We should like to note that a 

spread of experimental values obtained for and ultimate 

destructive stress of an in-plane shear and compression is very 

high, which, first of all, is due to a structure feature of 

reinforced plastics, laborious and complicated conditions of 

experiment realization. Therefore, to perform further 

researches, we have to accept average 

values МPа9033 
 , МPа1633 

 , 

МPа3023231313    , 

МPа501212    , which are based on experimental 

data presented in a work [7] for a glass reinforced plastic of 

similar structure. The internal shells were loaded by an air 

using a special device [8]. Theoretical and experimental 

results were obtained for a cylinder with stationary coupled 

ends. Values of normal stresses z ,   in a transversal and 

circumference direction, respectively, as well as a stress of in-

plane shear zr  under an action of internal hydrostatic 

pressure of q  intensity were specified. To evaluate a load-

carrying ability of the considered glass-reinforced plastic 

shell, a modified criterion of strength (14) and the following 

values of material ultimate strength МPаz 200 

 , 

МPаz 180 

 , МPаz 90 , МPаz 16 ,  

МPаzz 50 

  , and 

.30МPаzzrzrz  

  should be 

employed. We should like to note also that a special attention 

should be paid to a momentum-free plane stressed state. In 

this case, a value of circumferential stress reported in [8], 

which were obtained using an improved theory of multi-

layered shell discrete structure coincided fairly well with a 

value of circumferential stresses obtained by a formula 

h/rq . A main difference of results is found in a region of 

stationary coupled shell ends. A significant tangential stress 

zr  was found at a distance of shell thickness from its end, as 

it was reported in [8], which in a combination with a normal 

stress z  resulted in a destruction of this shell. 

     A theoretical value of damaging pressure intensity is based 

on an offered modified multi-nominal strength criterion (14). 

Theoretical values of corresponding stresses [8] were 

correlated with the help of analytical dependences (3) – (7). 

An intensity of theoretically found destructing pressure was 
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МPаq 6.2
. The destruction occurred in a zone of 

cylinder stationary coupled ends, and this value was a little 

lower than an experimentally obtained destructing 

pressure МPаqЭ 65.2*  . 
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