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Abstract- More than 400 million people around the world have 
diabetes mellitus so there is a need for a quick and accurate 
diagnosis of diabetes. Current diagnostic tests are lengthy and 
invasive, so in this research, we classify heart rate variability 
data from people who are healthy and people who have type 1 
diabetes using a discrete wavelet transform (DWT)-based 
machine learning model that combines Random Forest and 
Support Vector Machine. Before inputting the data into the 
model, we transform the data using the DWT, utilizing 
components in both the wavelet domain and the original 
domain. Our combination model achieved a high accuracy of 
93.64%, which was higher than the accuracy obtained by either 
Random Forest or Support Vector Machine alone. Also, 
inputting the components in the wavelet domain resulted in 
higher accuracy than inputting components in the original 
domain. In addition to high accuracy, our DWT-based Random 
Forest-Support Vector Machine model can be trained and 
produce a diagnosis in just minutes, promising a quick and 
accurate diagnosis of diabetes. 

Keywords- Diabetes Diagnosis, Discrete Wavelet Transform, 

Machine Learning 

 

I. INTRODUCTION 

More than 400 million people worldwide have diabetes 
mellitus (World Health Organization, 2021), a condition 
characterized by high blood sugar (What Is Diabetes?, 2020). 
Within this condition, two major types are type 1 diabetes, 
where the body does not produce insulin, and type 2 diabetes, 
where the body does not respond to insulin. Common 
complications of diabetes include hypoglycemia and diabetic 
ketoacidosis, which can be life-threatening (What Is Diabetes?, 
2020). Moreover, Jinli Liu, after analyzing the incidence of 
diabetes from 1990 to 2017, estimated that almost 23 million 
people were newly diagnosed with diabetes in 2017, more than 
double the approximately 11 million people who were 
diagnosed in 1990 (Liu et al., 2020). With more and more 
people needing to be diagnosed with diabetes each year, the 
need for an accurate and efficient diabetes diagnostic test 
continues to grow. Currently, diabetes diagnostic tests include 
the fasting blood sugar test, random blood sugar test, and 
glycated hemoglobin, often called A1C, test. Table 1 describes 
these tests and their drawbacks. 

TABLE I.  CURRENT DIABETES DIAGNOSTIC TESTS 

Test Description Drawbacks 

Fasting 

blood sugar 

Measures blood sugar level 

after at least 8 hours of fasting 

Requires fasting before the 

test 

Random 

blood sugar 

Measures blood sugar level at 

an arbitrary time; convenient 

Often must be repeated as 

blood sugar varies throughout 

the day 

A1C 

Measures the percentage of 

hemoglobin with sugar 

attached to it 

Affected by hemoglobin 

variant, anemia, pregnancy, 

smoking 

 

These tests are cumbersome. Specifically, the fasting blood 
sugar test requires fasting before the test, the random blood 
sugar test often must be repeated, and the A1C test is affected 
by numerous factors. 

Nevertheless, diabetes diagnosis using heart rate variability 
(HRV) could resolve these issues. HRV measures the variation 
in RR intervals, where an RR interval is simply the time 
between consecutive heartbeats. An RR interval can be 
visualized as the time between two peaks on an 
electrocardiogram (ECG), such as in Fig. 1. For example, at a 
heart rate of 60 beats per minute, one RR interval is 
approximately one second; however, one RR interval may last 
1.1 seconds while the next could be 0.9 seconds. 

 

 

Figure 1.  ECG graph: one RR interval is the time between two peaks (Sinus 

Rhythms1 Normal) 

 

HRV is a useful measure for diabetes diagnosis because, 
over time, high blood sugar causes damage to the heart, blood 
vessels, and nerves (World Health Organization, 2021). In fact, 
Schroeder supports an association between HRV and diabetics, 
and that the heart becomes more damaged over time in 
diabetics (Schroeder et al., 2005). Although HRV can be 
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affected by heart conditions unrelated to diabetes, HRV is still 
a good measure in the absence of such conditions. 

To facilitate the diagnosis process, in this research we used 
a DWT-based machine learning algorithm to classify HRV 
samples as either healthy or diabetic. Specifically, machine 
learning models are trained to classify a given set of data, and 
using their newly acquired knowledge, these models are then 
tested on a different set of data. Hence, the machine learning 
method is suitable for classifying HRV and performing a 
diagnosis. Furthermore, we used the DWT to remove outliers 
and white noise from HRV. We will explain DWT in more 
detail in the methodology section. Thus, our research question 
is, “How might a quick and accurate diagnosis of diabetes 
based on HRV be developed using the discrete wavelet 
transform and machine learning?” Our hypothesis is that 
inputting the wavelet domain components of the HRV data into 
a model that combines two machine learning models will yield 
a quick and accurate diabetes diagnosis. 

 

II. LITERATURE REVIEW 

The literature has generally agreed that there is an 
association between HRV and diabetes for at least 10 years; 
this association is necessary to establish that HRV is viable to 
use for diagnosing diabetes. In his 2002 study, Massimo 
Chessa investigated the association between HRV and diabetic 
autonomic neuropathy, which means diabetic nerve damage, by 
analyzing HRV from 50 children with type 1 diabetes and 30 
healthy children. Specifically, Chessa extracted various 
statistical measurements such as pNN50, the proportion of 
consecutive RR intervals that differ by more than 50 
milliseconds. The pNN50 parameter was significantly less in 
diabetic HRV, supporting an association between pNN50 and 
type 1 diabetes (Chessa et al., 2002). Since pNN50 was less in 
diabetic HRV, it must have significantly less variability than 
healthy HRV from one heartbeat to the next. Similarly, in 
2006, Kudat investigated the relation between HRV and 
whether a person has either type 1 or type 2 diabetes by using 
pNN50. Of 30 healthy individuals and 31 diabetics, the 
diabetics had lower pNN50 and lower RR intervals than the 
healthy individuals, and among the diabetics, those with heart 
complications had lower pNN50 and lower HRV than those 
without heart complications (Kudat et al., 2006). In addition to 
Chessa’s findings, Kudat supports that heart complications are 
associated with less HRV variability and faster RR intervals, 
posing heart complications as a confounding factor for HRV. 
Likewise, Schroeder analyzed longitudinal data from 6245 
diabetics over nine years, as well as cross-sectional HRV data 
from 9940 prediabetics. In addition to an association between 
HRV and diabetes, Schroeder found that cardiac autonomic 
impairment, the inability of the involuntary nervous system to 
control heart rate, worsened over time in diabetics (Schroeder 
et al., 2005). Just as Kudat supports that having a heart 
complication confounds HRV, Schroeder supports that HRV 
worsens after years of diabetes, which may cause significant 
differences in HRV even among diabetic patients. Therefore, 
the literature has well established that there is an association 
between HRV and diabetes. 

In addition, HRV is already used for the diagnosis of other 
illnesses. For example, it was used for the detection of cardiac 
autonomic neuropathy, a disease that damages the nerves 
controlling the heart (Bissinger, 2017). Likewise, Trivedi, 
through a review of many studies, found that HRV can be used 
to detect cardiac autonomic neuropathy even before the 
appearance of clinical symptoms.  (Trivedi et al., 2019). Hence, 
due to diabetes results in cardiac autonomic impairment, HRV 
is a viable, as well as valid, measure to use to diagnose 
diabetes. 

Previously, researchers have used statistical measures to 
differentiate between healthy and diabetic HRV, including 
pNN50, RMSSD (root mean square of the difference between 
consecutive RR intervals), SDNN (standard deviation of RR 
intervals), and NN50 (number of consecutive RR intervals that 
differ by more than 50 milliseconds). Chessa extracted pNN50, 
Kristiansen used pNN50 and rMSSD, Schroeder utilized 
rMSSD and SDNN, and Trivedi used SDNN, rMSSD, and 
NN50 (Chessa et al., 2002; Kristiansen et al., 2020; Schroeder 
et al., 2005; Trivedi et al., 2019). These statistical measures 
provide insight specifically into the variability of HRV. 

On the other hand, myriad machine learning models have 
been proposed to use HRV to diagnose diabetes. Yogender 
Aggarwal tested an Artificial Neural Network as well as 
Support Vector Machine (SVM) (Aggarwal et al., 2020). 
Moreover, Rajendra Acharya utilized the DWT to break down 
the HRV into multiple parts. Acharya then inputted these parts 
into a variety of machine learning models, such as Decision 
Tree, which has a flowchart-like structure that decides how to 
classify an input, and SVM, which constructs a boundary that 
separates data points by classification (Acharya et al., 2015). In 
addition, G. Swapna proposed a model that combines a 
convolutional neural network, long short-term memory, and 
SVM (Swapna et al., 2018). Furthermore, in our previous 
research, we tested Random Forest, which is a model that 
predicts the majority prediction of many Decision Trees 
(Shankar et al., 2022). A variety of statistical measures and 
machine learning models have been employed to distinguish 
between healthy and diabetic HRV, though the statistical 
measures did not specifically focus on diagnosis, and both the 
Random Forest and SVM models have yielded high diagnostic 
accuracy. While our previous work already used Random 
Forest, we combined Random Forest with SVM in this 
research to add the predictive power of both models as one, 
which should yield higher accuracy. Also, we utilize the DWT 
rather than statistical measures. However, while Acharya 
already used DWT to decompose the HRV into approximations 
and detail components, we went an extra step by denoising the 
HRV data, and we decomposed the HRV in novel ways. 

 

III. METHODOLOGY 

The purpose of this research was to create a quick and 
accurate diabetes diagnosis using HRV. We obtained the HRV 
data from the D1NAMO dataset. The D1NAMO dataset is a 
publicly available and anonymized dataset collected by Swiss 
researchers. This dataset contains data on ECG, HRV, 
breathing, walking, glucose measurements, and food eaten 
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from 20 healthy participants and 9 participants who had been 
diagnosed with type 1 diabetes (Dubosson et al., 2018). 
However, DICARDIA, a database that contains ECG data 
collected by researchers from Venezuela, also offered HRV 
data. Nevertheless, we did not use that data because many of 
those patients had cardiac autonomic neuropathy (Ledezma et 
al., 2014), which would confound a diabetes diagnosis. 
However, Dubosson acknowledges that some of the data is 
inaccurate and should be filtered. Inaccuracies in the HRV data 
were caused by occasions when poor conductivity between the 
device and the skin prevented the sensor from accurately 
recording a person’s heartbeat (Dubosson et al., 2018). These 
issues caused some RR intervals, which are the times between 
consecutive heartbeats, to seem too long or too short due to 
failing to detect a heartbeat or falsely detecting a heartbeat, 
respectively. In fact, Fig. 2 illustrates an outlier RR interval 
that was recorded as more than eight seconds. Thus, we noted 
which of the RR intervals were either below 500 milliseconds 
or above 2000 milliseconds to identify outliers that are 
inaccurate. 

 

 

Figure 2.  HRV with outliers 

 

After identifying the outliers in the HRV data, we saved the 
data in between the outliers as samples of 512 consecutive RR 
intervals. we chose 512 data points to enable the usage of the 
DWT, which requires a data set with a length that is a multiple 
of four. Also, each group includes enough data to make a 
reasonably accurate diagnosis. At the same time, 512 RR 
intervals would only take about 10 minutes to record, so the 
diagnosis process would be quick. Thus, despite only having 
HRV data from 19 healthy and 9 diabetic people, we obtained 
many samples from the same person. Overall, we obtained 
3003 healthy samples and 769 diabetic samples. 

Nevertheless, the HRV data still had large peaks that were 
not filtered out by the initial outlier removal. We used DWT to 
remove lingering outliers, making the HRV data more 
accurate. In addition, we used DWT to break down the HRV 
into multiple parts, allowing us to determine which parts, when 
inputted into machine learning models, resulted in the most 
accurate diabetes diagnosis. 

DWT is a mathematical data transformation technique that 
has the ability to both denoise and decompose data into 

different frequency components. First, our 4-Band DWT 
requires a 512 by 512 matrix that we constructed using filters 
in the 4-Band DWT filter bank. We denote this matrix by T. 
After constructing T, we applied 4-Band DWT to HRV sample 
S, a column vector of length 512, by multiplying it by T on its 
left as TS—still a 512-length column vector, the wavelet 
coordinates of S in the wavelet domain, and stored TS. Like S, 
TS has 512 entries. Notably, TS can be thought of as four 
groups of 128 entries each that are stacked on top of each 
other: the first 128 entries are a1, the next 128 entries are d1, the 
following 128 entries are d2, and the final 128 entries are d3. 
Equation (1) illustrates this stacking. 

   [

  
  
  
  

]                                                                                (1) 

The result of this step of DWT is that a1 can be used to 
approximate S with outliers removed, while d1, d2, and d3 
contain the removed outliers. However, d1, d2, and d3 also 
contain many smaller noisy values that are not the removed 
outliers. These smaller values can be removed by setting all 
values with a magnitude less than a certain threshold value 
equal to zero. We used three separate threshold values for each 

of d1, d2, and d3. We set each threshold to   √    (   ), 
where    is the standard deviation of    for        . The 
subsequent step of DWT is to use the resulting threshold value 
to set the values that have a magnitude smaller than the 
threshold equal to zero. Setting these small values equal to zero 
results in a different column of values, which we refer to as 
(TS)*. At this point, we had only completed part of DWT and 
obtained the components in the wavelet domain: TS, a1, d1, d2, 
d3, and (TS)*. To complete the transformation, we multiply the 
transpose of T by (TS)* to obtain S*, the denoised version of 
the original vector S. 

  (  )                                                                               (2) 

We can also multiply the transpose of T by TS to obtain S, 
which can be expressed as the sum of four orthogonal vectors, 
A1, D1, D2, and D3. These four vectors correspond to a1, d1, d2, 
and d3 transformed back out from the wavelet domain. 

                                                              (3) 

Our approach for using DWT is unique because we input 
DWT of S, its components in both Wavelet domain and 
original domain, denoised S and its DWT:  TS, (TS)*, a1, d1, 
d2, and d3 in addition to S* and A1 into machine learning 
models. In contrast, Acharya only input components in the 
original domain, namely A1, D1, D2, and D3. By inputting 
components in the wavelet domain, we assessed whether the 
denoising and decomposing ability of the first few steps of 
DWT are superior to applying the entire process by comparing 
diabetes diagnostic accuracies. 

After applying DWT, the data imbalance needed to be 
resolved before inputting the data into a machine learning 
model. There were vastly greater numbers of healthy HRV 
samples at this point compared to diabetic samples, so even a 
model that always predicts a sample to be healthy would obtain 
high accuracy. Thus, we used SMOTE Tomek resampling, a 
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technique that can use existing samples to create more samples, 
to generate more diabetic samples based on the already existing 
diabetic samples. We avoided removing healthy samples as 
doing so would remove valuable information from the dataset. 
After correcting the data imbalance, we obtained about 3000 
healthy samples and 3000 diabetic samples. 

After producing approximately equal numbers of healthy 
and diabetic samples, the HRV data was ready to input into a 
machine learning model. This research implemented a novel 
machine learning model for diagnosing diabetes with HRV. 
Our model combined Random Forest and Support Vector 
Machine. Random Forest constructs many flowchart-like 
structures that each vote on how to classify the input. Random 
Forest then predicts the classification with the majority vote. 
On the other hand, SVM creates a boundary that separates data 
points by their classification. For example, in Fig. 3, the curve 
separates the blue points from the red points. 

 

 

Figure 3.  Visual representation of SVM 

 

Random Forest obtained high accuracies in our previous 
research (Shankar et al., 2022), and SVM has also performed 
very well previously (Swapna et al., 2018; Aggarwal et al., 
2020). Hence, combining the two models should yield even 
higher accuracy due to combining the predictive power of both 
models. 

To combine Random Forest and SVM, we scrutinized the 
performances of Random Forest alone and SVM alone. We 
found that when SVM was tested to diagnose diabetes using d3 
HRV data, every sample that was predicted to have diabetes 
truly had diabetes. However, the model also predicted many 
healthy samples to be diabetic, resulting in poor performance 
overall. On the other hand, Random Forest, when tested to 
diagnose diabetes using (TS)* HRV data, performed well 
overall (Shankar et al., 2022). 

Thus, we decided to combine Random Forest and SVM by 
generating a prediction for the HRV sample with both models, 
and then applying the below logic. 

If: SVM predicts the patient has type 1 diabetes, predict 
type 1 diabetes. 

Else: Predict Random Forest Prediction. 

As our proposed model depends largely on the accuracy of 
the Random Forest model, we tested inputting the three DWT 
components among TS, (TS)*, a1, d1, d2, and d3 that, when 
inputted into Random Forest, obtained the highest mean 
accuracies. These three data types were (TS)*, TS, and a1 
(Shankar et al., 2022). In addition, we inputted No DWT, S*, 
and A1 data as controls to assess the effect of DWT on the 
diagnosis accuracy of our model. We refer to the data inputted 
into Random Forest as Random Forest <DWT component>. 
We always inputted d3 data into SVM because every sample 
the model predicted to have type 1 diabetes truly had type 1 
diabetes; thus, we refer to SVM as SVM d3. By relegating the 
diagnostic possibility of predicting type 1 diabetes for a type 1 
diabetes sample to SVM, the model is more accurate than 
Random Forest alone. 

Finally, we tested the model using 10-fold cross-validation, 
allowing us to obtain ten different results of how our model 
performed to avoid overfitting. For each individual result, we 
recorded the proportion of test samples that were true positives, 
true negatives, false positives, and false negatives. Using the 
mean of these proportions, we calculated accuracy, precision, 
recall, and F1. These metrics provide detailed insight into the 
performance of the model. Also, we compared these results 
with the results from Random Forest alone, SVM alone, and 
other diabetes diagnostic tests to determine if our proposed 
model is relatively accurate. 

 

IV. RESULTS 

Below in Table 2 are the results we obtained after testing 
the Random Forest SVM combination model. We tested 
inputting no DWT, a1, TS, (TS)*, S*, and A1 data into the 
Random Forest; we inputted d3 data into the SVM. 

 

TABLE II.  DIABETES MEAN DIAGNOSTIC RESULTS FOR DIFFERENT 

INPUTS TO RANDOM FOREST AND D3 DATA INTO SVM 

Random Forest Input 
Metrics 

Accuracy (%) Precision (%) Recall (%) F1 

TS 93.64a 96.64 90.92 0.9370a 

A1 92.98 97.13a 88.85 0.9280 

a1 92.58 95.77 89.38 0.9247 

No DWT 92.33 91.76 94.18a 0.9296 

(TS)* 92.00 95.24 89.31 0.9218 

S* 90.46 96.64 89.31 0.9234 

a. Best obtained metrics 

 

We display the results in the form of confusion matrices in 
Fig. 4. A confusion matrix is a matrix that records how a 
machine learning model classified different classes of samples. 
In each of our confusion matrices, there are four entries 
corresponding to the proportion of samples that were either 
healthy or diabetic and predicted to be either healthy or 
diabetic. Within each entry, there are two numbers: the mean 
proportion across the ten results as a percentage followed by 
the standard deviation of the ten proportions from each result. 
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To obtain the mean accuracy from each confusion matrix, add 
the mean proportions from the top-left entry and bottom-right 
entry, which represent the samples correctly predicted as 
healthy and correctly predicted as diabetic, respectively. To the 
right of each confusion matrix is a gradient of green 
representing the percentage of the total number of HRV 

samples. The color of each box corresponds to the mean 
proportion of the total number of HRV samples that were either 
healthy or diabetic and predicted to be either healthy or 
diabetic. The gradient ranges from 0% to 50% as our use of 
SMOTE Tomek resampling is expected to yield around equal 
numbers of healthy HRV samples and diabetic HRV samples.

 
 

 

Figure 4.  All six confusion matrices of results of Random Forest - SVM combination model 
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The highest mean accuracy of 93.64% was achieved with 
Random Forest TS and SVM d3, which also achieved the 
highest F1 of 0.9370. With this model, only 1.64% of HRV 
samples were falsely diagnosed as diabetic, though 4.71% of 
samples were diabetic but undiagnosed with diabetes. Also, of 
the six tested models, results had the least variability with 
Random Forest TS and SVM d3. But, performance was still 
substantially more variable than in our previous work, where 
standard deviations were less than 1% compared to greater than 
3% in the current results. 

Although not the model with the greatest mean accuracy, 
Random Forest No DWT and SVM d3 achieved the highest 
recall of 94.18% and had only 3.13% of samples be false 
negatives, more than one percentage point less than with 
Random Forest TS. However, precision was only 91.76%, the 
lowest out of all the models, and 4.55% of samples were 
falsely diagnosed with diabetes, suggesting that this model 
minimizes false negatives by simply predicting diabetes more 
often. 

On the other hand, regarding the Random Forest a1 and 
SVM d3, the Random Forest (TS)* and SVM d3, and the 
Random Forest S* and SVM d3 models, their mean accuracies 
were more than one percentage point less than the highest 
mean accuracy of 93.64% and the models had higher rates of 
false positives and false negatives. 

It should be noted that the Random Forest A1 and SVM d3 
model obtained the highest precision of 97.13%. However, the 
mean accuracy of this model was more than half a percentage 
point lower than the highest mean accuracy of 93.64%, and the 
recall and F1 metrics for this model were lower than those 
metrics for the Random Forest TS and SVM d3 model. 

 

V. DISCUSSION 

Overall, inputting TS data into Random Forest and d3 data 
into SVM yielded the highest mean accuracy of 93.64%. 
Although the model’s performance had a relatively high 
variation compared to our previous work, the model surpassed 
the highest mean accuracy of Random Forest alone, which was 
only 91.9%, and the highest mean accuracy of SVM alone, 
which was only 77.5% (Shankar et al., 2022). Combining 
Random Forest and SVM is more effective at diagnosing 
diabetes than just Random Forest. Also, the use of the TS 
component of DWT is more effective for diagnosing diabetes 
than the use of components in the original domain. The 
combination model performed with higher accuracy than the 
A1C test and fasting blood sugar test did in an Iranian 
population, with 90% and 80% accuracy, respectively 
(Ghazanfari et al., 2010). Our proposed model is also more 
accurate than the random blood sugar test, which obtained 
92.2% accuracy in early pregnancy (Adefisan et al., 2020). 
Although the accuracy of the proposed model is less than the 
95.7% accuracy obtained by Swapna with their combination 
model (Swapna et al., 2018), Random Forest and SVM only 
require minutes to be trained, whereas the neural networks used 
by Swapna can take upwards of hours for training. In the 
future, the Random Forest - SVM model can be tested for 
diagnosing HRV samples from different demographics, which 

would be facilitated by quick training times. As age and sex are 
important determinants of HRV (Tegegne et al., 2018), such an 
investigation could yield a diabetes diagnosis that is more 
relevant to a specific age range and sex. 

However, a significant obstacle was the small sample size 
of only 29 patients in the D1NAMO dataset, even despite 
extracting multiple HRV samples from each patient. Hence, 
before clinical use, the model should be trained with HRV 
from a large number of people. In addition, to make the 
model's diagnosis more relevant to people who have not yet 
been diagnosed with diabetes, the model should specifically be 
trained with HRV from just-diagnosed diabetics. Moreover, we 
used SMOTE Tomek to generate more than 2000 extra diabetic 
HRV samples from just 769 samples. But, these extra diabetic 
HRV samples may not actually be plausible diabetic HRV 
samples. Nevertheless, collecting HRV from equal and large 
numbers of healthy and diabetic people can resolve this issue. 
Overall, the Random Forest - SVM combination model 
proposed in this research is preferable to other popular 
diagnostic tests because the combination model obtained a 
higher accuracy and performed quicker than the other 
diagnostic tests. 

Just as this research combined the Random Forest and 
SVM models, future work could combine the tested Random 
Forest - SVM models to minimize false positives and false 
negatives. Moreover, HRV from many different people is 
essential in the future for results that are representative of large 
populations. With more diverse and abundant HRV data, the 
Random Forest SVM model can be used in clinics to diagnose 
diabetes accurately and quickly. 
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