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Abstract- The SVEIR epidemiological model was presented to 

gain insight into the mathematical epidemiological model with 

herd immunity in the population. Positivity of solution was 

shown for the mathematical and epidemiological well posed of 

the model. The stability of the model was analyzed for the 

existence of disease free and endemic equilibrium points. The 

threshold quantity “Basic Reproduction Number” (
0

R ) with 

and without vaccine was derived using next generation matrix 

method (NGM), and it is shown that the disease free 

equilibrium point is locally asymptotically stable whenever 

the basic reproduction number is less than unity i.e. (
0

1R  ), 

otherwise endemic whenever it exceeds unity (
0

1R  ). Global 

stability of endemic equilibrium was analyzed using 

Lyapunov method and numerical simulation of the model was 

carried out   using Runge-Kutta method of order four (4) with 

MAPLE 18. 
Results showed that herd immunity can only be attained 
whenever everyone in the population is vaccinated against the 

infection, since (
0Vaccine

R R ). 

Keywords- Vaccine, Reproduction Number, Stability, Critical 

Point, Numerical Simulation  

 

I. INTRODUCTION  

The term "herd immunity" appears first in a paper 
published in 1923 titled "The spread of bacterial infection: the 
problem of herd immunity" [20]. Herd Immunity is the direct 
result of vaccines that work and a vaccination rate that is high 
enough [4]. Herd immunity is also known as community 
immunity which is a population-seek name for a phenomenon 
in the context of disease that can be passed from person to 
person. Vaccine convey immunity to disease while immunized 
individuals have antibodies that will neutralize germs when 
they come in contact with them, making it much less likely to 
pass on to others [17].  

Also, if nearly everyone is immune, then almost no one will 
spread the disease so, the people who have not been 
vaccinated, those whose vaccinations have become weakened 

and whose vaccine are not fully effective can be shielded by 
the herd immunity because vaccinated people around them 
would not get sick [8]. An important characteristic of most 
vaccines is that they provide both individual and community 
protection. Most of the diseases against which we vaccinate are 
transmitted from person to person. When a sufficiently large 
proportion of individuals in a community is immunized, those 
persons serve as a protective barrier against the likelihood of 
transmission of the disease in the community, thus indirectly 
protecting those who are not immunized and those who 
received vaccine but are not protected (vaccine failures) [13]. 
The vaccination rate that is critical for stopping the spread of 
disease depends on how infectious the disease is. Meanwhile 
the low vaccine efficacy and low vaccination rate result into no 
herd immunity while high in vaccine efficacy and its rate yields 
herd immunity, some diseases which vaccines can prevent or 
eradicate includes measles, pneumonia, pertussis, Rubella, 
Mumps, diphtheria Tetanus, Polio, Haemophillus influenza 
type B, Hepatitis B, Smallpox etc.[5]. The infectious diseases 
lead to endemic when it can be sustained in a population 
without the need for external inputs. This implies that on 
average, each infected person is infecting exactly one other 
person (anymore and the number of people infected will grow 
exponentially and there will be an epidemic, any less and the 
disease will out) [10]. 

Since 1962, the USA federal government has supported 
childhood vaccination programs through a grant program 
administered by the CDC. [19]. 

Mathematical epidemiology relating to vector-borne 
diseases has been repeatedly a source of important insights for 
the field of vaccination and herd immunity. 

Interest in applying the "magic" of herd immunity in 
disease control has encouraged mathematical research 
exploring the theoretical implications of the subject [1, 7]. 

In 1796, Edward Jenner demonstrated that inoculation with 
material from a cowpox (vaccinia) lesion would protect against 
subsequent exposure to smallpox. This began the vaccine era, 
although it was nearly 100 years until the next vaccine (against 
rabies) was introduced. In the twentieth century, many new 
vaccines were developed and used, with spectacular impact on 
the occurrence of disease. The Centers for Disease Control and 
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Prevention (CDC) declared vaccinations to be one of the 10 
great public health achievements of the twentieth century [3, 6] 

Anderson RM and May RM (1982), used SIR 
epidemiology model to predict herd immunity, he concluded 
that the percentages of vaccinations required for herd immunity 
were based on the Ro and contact number and recommends 
increase in percentage of the population to be vaccinated in 
order to maintain herd immunity. He advised parents to realize 
that vaccinations are only effective if a large portion of the 
population receives the vaccination [1]. 

The Encyclopedia of Public Health says “Survival of the 
(disease) agent is crucial if it cannot survive, it cannot invade 
and infect new hosts, and the epidemic ends”. Any vaccination 
program for protection against Sexual Transmitted Infectious is 
different for two major reasons. First, there is extreme 
heterogeneity in the risk of acquiring and transmitting the 
infective and second, the diseases affect sexually active adults, 
and severe diseases often is restricted to a minority  of cases, 
with the majority severe consequences at women rather than 
man. These factors will influence the effects of herd immunity 
and the target populations to be protected by vaccination 
programs. Preventive vaccines offer an ideal tool for the 
control of infectious disease while treatments which work in 
advance of any disease and associated morbidity which do not 
rely on the identification of any cases. 

According to Meissner, (2015), if a sufficient number of 
people (herd) are immune, it will reduce the probability of 
susceptible person that will come in contact with an infectious 
person because the infection will no longer circulate. The 
benefits of herd immunity apply to various segments of our 
society among which are children, immune suppressed patients 
who cannot be vaccinated, elderly people who cannot mount an 
optimal immune response to vaccine, people in whom vaccine-
induced has waned and the people who remain unvaccinated by 
choice Vaccines teach the immune system to fight disease by 
mimicking a natural infection [18]. 

Andrew wakefield (2016) explained herd immunity is the 
presence of adequate immunity within a population against a 
specific infection that operates to protect those at high risk of 
serious infection and consequently reduce morbidity and 
mortality from that infection [2]. The immune system is a 
network of cells, tissues and organs that work together to 
defend the body against attacks by foreign invaders. It is a form 
of immunity that occurs when the vaccination of a significant 
portion of the population provides a measure of protection for 
individual who are not vaccinated (John et al, 2000), [16]. The 
effect of vaccine on herd immunity shall be investigated in this 
research work. 

  

II. MODEL FORMULATION 

The total population size at time t denoted by N (t) is sub-
divided into five (5) compartments of Susceptible individual 

S(t), Vaccinated individual V(t), Exposed individual E(t), 
Infected individual, I(t) and Recovered individual R(t) so that: 

( ) ( ) ( ) ( ) ( ) ( )N t S t V t E t I t R t                 (1) 

The susceptible population is increased by the recruitment 
of people (either by birth or immigration) into the population, 
all recruited individuals are assumed to be susceptible at a rate 
π, the population of Susceptible is further increased by the 
population of vaccinated individuals due to vaccine wanes at 
the rate (ϕ). Finally, the susceptible population decreases by 
infection which can be acquired following effective contact 
rate β, natural death, at the rate (μ) and by vaccinated 
individuals at the rate (ρ). Hence; 

 (1 )
dS

SI S V
dt

                        (2) 

The population of vaccinated individual is increased by the 
individuals that received vaccine at the rate (ρ). The population 
later decreased by the natural death rate (μ) and the rate at 
which the vaccine wanes (ϕ). Hence; 

( )
dV

V
dt

                           (3) 

A proportion (1 ) of newly infected individuals that 

produce active infection move to the exposed class E, while the 
remaining proportion ω move to the infected class I. The 
population of exposed class is reduced by the natural death rate 
(μ) and the progression rate (κ). Hence; 

 (1 ) ( )
dE

SI E
dt

                              (4) 

The population of Infected individual is increased by the 
remaining proportion of individual that produce active 
infection at the rate (  ) and the progression of exposed 

individual at the rate ( ). The population is decreased by the 
treatment of infected individuals at the rate ( ), natural death 

and death due to infection at the rate (  ) and (  ) 

respectively. Hence; 

( )
dI

SI E I
dt

                                         (5) 

The population of Recovered individual is increased by the 
number of infected individuals that are treated at the rate ( ). 

The population is decreased by the natural death rate of 
recovered individual at the rate ( ). Hence; 

dR
I R

dt
                                                      (6) 

Thus in summary, the dynamics transmission model is 
given by the following system of non-linear differential 
equations.
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( ) ( )
(1 ) ( ) ( )

( ) ( )

( ) ( )
(1 ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )

dS S t I t
N S t V t

dt N

dV
V t

dt

dE S t I t
E t

dt N

dI
S t I t E t I t

dt

dR
I t R t

dt


   

  


  

    

 

    

  

   

    

 
















                  (7) 

We rescale the state variables of the formulated model by 
normalizing as follows; 

, , , ,
S V E I R

S V E I R
N N N N N

    

      

So that 1S V E I R
    

      

Thus, after dropping of bars, model (7) leads to the 
following; 

(1 ) ( ) ( ) ( ) ( )

( ) ( )

(1 ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )

dS
S t I t S t V t

dt

dV
V t

dt

dE
S t I t E t

dt

dI
S t I t E t I t

dt

dR
I t R t

dt

    

  

   

    

 

    

  

   

    

 
















           (8) 

We will consider the model system (8). Since R is 
independent of other variables. 

(1 ) ( ) ( ) ( ) ( )

( ) ( )

(1 ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

dS
S t I t S t V t

dt

dV
V t

dt

dE
S t I t E t

dt

dI
S t I t E t I t

dt

    

  

   

    

    

  

   

    













           (9) 

 

 

 

 

 

TABLE I.  DESCRIPTION OF VARIABLES 

Variables Definitions 

S Susceptible individual 

V Vaccinated individual 

E Exposed individual 

I Infected individual 

R Recovered individual 

 

TABLE II.  DESCRIPTION OF PARAMETERS 

Parameters Definitions 

π Recruitment rate into the population 

ρ Vaccine rate 

ϕ Vaccine wanes. 

ω Proportion of new infection  that produce active infection 

μ Natural death rate 

κ Progression rate 

σ Treatment of infected individuals. 

δ Death rate 

β Effective contact rate 

 

 

 

Figure 1.  Schematic Diagram 

 

III. POSITIVITY OF SOLUTION 

For this SVEIR epidemic model to be epidemiological and 
mathematically well posed, it is necessary to prove that all state 
variables are non-negative for all 0t  . 

Theorem: Let { (0) 0, (0) 0, (0) 0, (0) 0}S V E I      

Then, the solution: { ( ), ( ), ( ), ( )}S t V t E t I t of the model 

system equation (2) are positive 0.t   

Proof: (1 ) ( ) ( ) ( ) ( )
dS

S t I t S t V t
dt

          

From which it follows that: 
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dS
S

dt
   

Consequently: 

0
dS

S
dt

   is the first order homogeneous differential 

equation. 

I.F. =     
dt t    

Multiplying by the Integrating factor on both sides will 
give: 

0
t tdS

S
dt

 
   

It then follows that: 

( ) 0
t

d S dt


  

Integrating on both sides gives:  

t
S C


  where C is a constant of the integration, it follows 

that: 

( )
t

S t C


  

Applying the initial condition that, when 

0, ( ) (0),t S t S  we have: 

(0)S C  

Hence: 

( ) (0)
t

S t S


                                                                  (10) 

Since 0 (0) 0,and S   then: 

( ) 0,S t   If 0t and t   

Therefore: 

( ) 0 0.S t t                                                          (11) 

In a similar way, it can be shown that 

( ) 0, ( ) 0, ( ) 0, 0.V t E t I t t      

Therefore, the model can be considered as been 
epidemiologically and mathematically well posed 

A. Disease Free Equilibrium 

For critical points, we set 

dS

dt
=

dV

dt
=

dE

dt
=

dI

dt
=0     

At disease free equilibrium, it is assumed that there is no 
infection; Hence (DFE) is given as 

0
( , , , ) , , 0,

( ) ( )
S V E I

  


    
  

 

 
 
 

 

B. Endemic Equilibrium 

The endemic equilibrium of the model (9) is given below 
as; 

1

1

3

1 2 3

*

*

( 1)
*

*

M
S

A K

V
K

K
E

A

K K K
I

M


















 

Where; 

1 2 3
, ,K K K              

2
A K      

1 2

1 1 2 3

( )

( 1) ( )

M A K K

K K K K

  

    

  

    
 

C. Basic Reproduction Number 
o

R  

The basic reproduction number of the model (9) is 
calculated by using the next generation matrix [9]. Using the 
approach, we have,    

(1 ) ( )

( )

E SI Ed

I SI I Edt

   

    

 
 

  

    
    

    
         (12) 

After taking partial derivative (12) at the disease free 
equilibrium, we have: 

 0

0

0 (1 )

0

S
F

S

 





 
 
 

               (13) 

0
V

 

   




  

 
 
 

                     (14)                            

Then, 

0

0

( )

( ) ( )

S
R

  

       




    
                   (15) 

Basic reproduction number is an important notion in 

epidemiological models and is the usually denoted by 
o

R . This 

number can be defined as the expected average number of 
secondary infection generated by infected infectious individual 
in his/her infectious period in the susceptible population. 

D. Local Stability of Disease Free Equilibrium 

Theorem 2: If 1
Vaccine

R  , then, the disease free equilibrium is 

locally asymptotically stable and unstable in 1
Vaccine

R   
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Proof: The Jacobian matrix  0
J P   of the model equation (9) 

evaluated at disease free equilibrium is given by; 

 

0

0

0

0

0 ( ) 0 0

0 0 ( ) (1 )

0 0 (( ) )

o

S

J P
S

S

  

 

   

    

 

 


  

   

 
 
 
 
 
 

    (16) 

The eigenvalues of  0
J P  are 

1 2
, ( )         and 

the remaining sub-matrix is; 

  0

1

0

( ) (1 )

(( ) )
o

S
J P

S

   

    

  


   

 
 
 

 

The characteristics polynomial of equation (16) above is; 

2

2 1 0
0A A A                (17) 

Where; 
2

1A   

1 0
2A S          

0 0
( ) ( ) ( )A S                   

0
( ) ( ) ( ) 0S                   (18) 

0
( ) ( ( ) ( ))S                       

Divide both sides by the RHS of (18), gives; 

0
( )

1
( ) ( )

S  

       




    
 

Hence 
0

1R   

It can be seen clearly from the above that
2

0A  ,
1

0A 

and that 
0

0A   if 
0

1R  , 

From the above, all the eigen-values of the Jacobian matrix 

 
O

J P  are real and negative when 1
o

R  , therefore the disease 

free equilibrium is locally asymptotically stable  

E. Global Stability of Endemic-Equilibrium 

Lemma: For
0

1R  , the equation (9) is globally 

asymptotically stable if  

* * * *
, , ,s s v v e e i i    and X Y and unstable when

0
1R  . 

Proof: Using the constructed Lyapunov function, the global 
stability of the endemic equilibrium is proved by defining the 
Lyapunov function as follows: 

* *
, , ,V s v e q


 =

*

* *
ln

s
s s s

s
 

 
 
 

+

*

* *
ln

v
v v v

v
 

 
 
 

+

*

* *
ln

e
e e e

e
 

 
 
 

+ 

*

* *
ln

i
i i i

i
 

 
 
 

          (19)  

By direct calculating, the derivative of V along the solution 
of equation (19), we have; 

dV

dt
=

*
s s ds

s dt

 
 
 

+

*
v v dq

v dt

 
 
 

+

*
e e de

e dt

 
 
 

+

*
i i di

i dt

 
 
 

                                        (20) 

dV

dt
=  

*

(1 )
s s

si s v
s

    


   
 
 
 

+ 

 

 

*

*

( )

(1 ) ( )

v v
v

v

e e
si e

e

  

   


  


  

 
 
 

 
 

 

 

*
i i

i

 
 
 

 ( )si e i                        (21) 

Substituting 
*
, *,s s s v v v   

* *
,e e e i i i   

Into equation (21) 

Collecting the like terms, we have: 

* * 2

*

* * 2

*

*

* *

* 2 * 2

*

( )
(( ) ( ))

( )
( ( ) ) ( )

( )
(1 ) ( )( )

( ) ( )
( ) ( ( )

dV s s s s
i v v

dt s s

v v v v
i i

v v

e e
s s i i

e

e e i i
s s

e i

 

    

 

   

 
    

 
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          (22) 

Open the brackets of (22) 
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Re-arranging the positive and negative terms 

Where 
dV

X Y
dt
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Hence, if X Y , then we obtain 0
dV

dt
 . Noting that 

0
dV

dt
  if and only if 

* * * *
, , ,s s v v e e i i    , therefore, the largest compact 

invariant set:  

 * * * *
( , , , ) : 0

dV
s v e i

dt
  Is the singleton  *

E  where 

*
E is the endemic equilibrium. Hence, by  

La Salle’s principle, it implies that 
*

E  is globally 
asymptotically stable in  if .X Y  

F. Numerical Simulation 

Numerical simulation of the SVEIR epidemic model is 
carried out by MAPLE 18 software using Numerical Runge-
Kutta method of order four (4). The table of the parameter 
values used as shown in table 3. 

 

TABLE III.  PARAMETERS AND VALUES 

Parameters Values 

π 500 

β 0.2 

ω 0.2 

κ 0.002 

μ 0.5 

δ 0.9 

ρ 0.01 

γ 0.2 

υ 0.2 

σ 0.2 
 

 

IV. DISCUSSION OF RESULTS AND CONCLUSION 

Five mathematical epidemiological compartmental model 
(SVEIR) was presented to gain insight into the effect of 
vaccine on herd immunity in the population. The stability of 
the model was analyzed for the existence of disease free and 
endemic equilibrium points. The threshold quantity “Basic 

Reproduction Number (
0

R ) with and without vaccine was 

derived using next generation matrix method (NGM), and it is 
shown that the disease free equilibrium point is locally 
asymptotically stable whenever the basic reproduction number 

is less than unity i.e (
0

1R  ), otherwise endemic whenever it 

exceeds unity (
0

1R  ). The result shows that Basic 

Reproduction Number (
0

R ) with vaccine is far less compared 

to when vaccine is absent i.e. (
0Vaccine

R R ). 

 Global stability of endemic equilibrium was analyzed 
using Lyapunov method and the result shows that endemic is 
stable whenever Basic Reproduction Number exceeds unity i.e. 

(
0

1R  ). Numerical simulation of the model in figure 2 shows 

that vaccination of susceptible individuals reduces the 
dynamical spread of the disease compared to when vaccine 
given is not implemented. Figure 3 shows that introduction of 
the vaccine plays a vital role in the dynamical control of the 
SVEIR diseases. Its influence over the basic reproduction 
number cannot be over emphasized. It reduces this threshold 
quantity that determines the spread of any contagious disease 
to the minimum point. Figures 4 and 5 show that;  herd 
immunity can only be attained whenever everyone in the 
population is vaccinated against the infection. The result in 
figure 6 shows that herd immunity can be attained when the 
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vaccination of susceptible individuals and treatment of infected 
individuals is full.  

Conclusively, full vaccination of susceptible individuals 
and complete treatment of infected individuals should be given 
adequate priority to forestall the dynamical spread of the 
disease in the population. 

 

 

Figure 2.  Graph of basic reproduction number against treatment (σ) rate at 

time (t) 

 

 

Figure 3.  Graph of basic reproduction number against vaccine rate (ρ) at 

time (t) 

 

 

Figure 4.  Graph of total population against time (t) when ρ = σ = 0 

 

 

Figure 5.  Graph of total population against time (t) when ρ = σ = 5 

 

 

Figure 6.  Graph of total population against time (t) when ρ = σ = 1 

 

 

 

 



International Journal of Science and Engineering Investigations, Volume 6, Issue 69, October 2017 148 

www.IJSEI.com            Paper ID: 66917-20 ISSN: 2251-8843 

REFERENCES 

[1] Anderson RM, May RM. Directly transmitted infectious diseases; 
control by vaccination. Science 1982;215:1053-60. 

[2] Andrew W. 2016:  Notes on Herd Immunity from Andrew Wakefield-
Vaxxed 

[3] CDC. Impact of vaccines universally recommended for children—
United States, 1900–1998. MMWR 1999; 48:243–8. 

[4] CDC. National, state, and urban area vaccination coverage levels among 
children aged 19–35 months—United States, 2000. MMWR 2001;50: 
637–41.  

[5] CDC. Recommended childhood immunization schedule—United States, 
2001. MMWR 2001;50 :7–10, 19. 

[6] CDC. Ten great public health achievements—United States, 1900–1999. 
MMWR 1999;48: 241–243.  

[7] Cvjetanovic B, Grab B, Dixon H. Epidemio- logical models of 
poliomyelitis and measles and their application in the planning of 
immuniza- tion programmes. Bull World Health Organ 1982;60:405-22. 

[8] Dorland's illustrated medical dictionary. 24th ed. Philadelphia, PA: WB 
Saunders, 1965.  

[9] Driessche P. and Watmough J., Basic Reproduction numbers and sub-
threshold endemic equilibria for compartmental models of disease 
transmission, Mathematical Biosciences 180, Pp 29–48. (2002) . 

[10] Dubos R, Dubos J. The white plague: tubercu- losis, man, and society. 
New Brunswick, NJ: Rutgers University Press, 1952. (16) 

[11] Editorial Team of Vaccine Today, (2015); 

[12] “What is herd Immunity?: vaccine today  European Journal of 
Epidemiology, vol.16, no.7.pp 601-606. 

[13] Freed GL, Katz SL, Clark SJ. Safety of vaccinations:  JAMA 
1996;276:1869–72.    (8). 

[14] http:/vaxxedthemovie.com/note-herd-immunity-andrew-wakefield  
download on 7th July. 

[15] https://WWW.vaccinestoday.eu/sorie/what-is-herd-immunity 

[16] John, T.J and Samuel, R. (2000); “Herd Immunity and herd effect; new 
insights and definition” 

[17] Last JM. A dictionary of epidemiology. 2nd ed. New York, NY: Oxford 
University Press, 1988. 

[18] Meissner H.C, (2015); “Why is herd immunity so Important?” Journal of 
America Academy of  Pediatrics. 36/5/14.1 

[19] Section 317 of the Public Health Service Act, 42 U.S.C. 247b. 

[20] Topley WWC, Wilson GS. The spread of bacterial infection. The 
problem of herd immunity. J Hyg 1923;21:243-9. 

 


	I. Introduction
	II. Model Formulation
	III. Positivity of Solution
	A. Disease Free Equilibrium
	B. Endemic Equilibrium
	C. Basic Reproduction Number
	D. Local Stability of Disease Free Equilibrium
	E. Global Stability of Endemic-Equilibrium
	F. Numerical Simulation

	IV. Discussion of Results and Conclusion
	REFERENCES


