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Abstract- Einstein's theory of relativity introduced the 4-
dimensional space-time continuum, also the space-time fabric, 
to explain how matter bends the space and time. Likewise, one 
can think of the globotoroid space as being a 3-dimensional 
fabric woven by, ad infinitum, spheroid and toroid shells 
delicately stitched with a wormhole. The purpose of a 
wormhole is two-fold: The first is to prevent the dynamically 
awkward spindle torus formation, and the second is to keep the 
nest together by forming the globotoroid space continuum. The 
present report elucidates an unexpected behavior inside this 
intriguing space and shows how matter transforms this space 
into the 4-dimensional analog of the space-time continuum.  
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I. INTRODUCTION 

By enabling new insights into different scientific 
phenomena, the globotoroids are becoming increasingly 
important in mathematical sciences. They offer a simple 
dynamic model for expressing natural processes of inflation 
(expansion) and deflation (contraction) in terms of the spheroid 
and toroid topologies regulated by the frequency and growth 
parameters. The globotoroid inflation, however, is not to be 
confused with the cosmological inflation which happened 
immediately after the initial singularity expanded into the big 
bang [1]. Here, inflation and deflation processes proceed in 
cyclical manner and are free from singularities. When matter is 
incorporated with these processes the 4th-dimension emerges, 
which is the subject of the present report.  

In Analysis Section A) we show how the globotoroid 
solutions form the phase space continuum, or fabric, which is 
sensitive to different computational factors. By altering 
integration step size and numerical resolution different, but 
similar, non-reversible globotoroid realizations are possible 
from the uniquely defined equations. To explain this, 
relationship between the globotoroid inflation and the 
wormhole is examined under different computational 
conditions. 

Analysis Section B) introduces velocity derived from the 
globotoroid phase space, or the phase space velocity. It is 
shown that this velocity has two components; the linear 
velocity along the wormhole path, and the linear velocity in the 
plane perpendicular to the wormhole direction. The latter may 
be thought of as being a generalization of the linear velocity 
observed in solutions of equations describing the 2-
dimensional circular motion.  

Furthermore, by letting a mass particle follow the 
breadcrumb trail formed by a loxodromic trajectory, we 
address how linear and angular momenta are inserted in the 
globotoroid phase space. In addition, when the momenta are 
conserved we show that a particle velocity along the wormhole 
direction remains constant, while in the transverse direction 
this velocity is inversely proportional to the phase space 
velocity. As a result, by following the breadcrumb trail the 
particle spins, and the existing 3-dimensional globotoroid 
phase space expands into the 4-dimenssional space continuum 
which is analogous to the 4-dimensional space-time in general 
relativity. Here, however, matter does not bend the space-time 
fabric, instead matter brings on momentum which spins 
particles around the energy states defined by the loxodromic 
solutions. A somewhat similar conclusion was previously 
reported by researchers from Canada [2]. They observed the 
analogy between the space-time and energy-momentum fabrics 
by identifying “a place called phase space” as being our reality. 

 

II. ANALYSIS SECTION 

A. The Globotoroid Phase Space 

In [3] we introduced the ordinary differential equation 
(ODE) representing the globotoroid model as, 

dX(t)/dt=ω Y(t)-AZ(t)X(t) 

dY(t)/dt=-ω X(t)              (1) 

dZ(t)/dt=-B+A[X(t)
2
+Y(t)

2
+1] 

where t is the time, X(t) and Y(t) are referred to as the action, 
or orbital, time dependent space variables, and the coefficient 
ω=2πf is the angular frequency with f>0 being the frequency. 
The time dependent variable Z(t) is the growth variable and is 
stimulated by the growth parameters A, B>0. The three 
variables form the time dependent globotoroid solutions in the 
Euclidean 3-dimensional space, or R

3
. In dynamical systems 

this Euclidean space is commonly referred to as the phase 
space, which from now will also be the home for globotoroids. 
The units of t are understood as being in seconds (s), although, 
in general t can be set in any time units. 

As noted previously (1) has singular solutions only when 
A=B, [3]. They are given by the solutions X=0, Y=0 and ZεR, 
which also define the 1-dimensional singular manifold. The 
condition A=B implies that the phase space is densely 
populated with concentric spheroids surrounding this manifold. 
For A≠B, the singular manifold transforms into the 1-
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dimensional slow manifold, or the wormhole, which for B<A 
deflates all spheroids in the phase space, while for B>A 
spheroids turn into the globotoroid. For our purpose the latter is 
of interest. 

Although (1) appears to be quite simple in formulation, it 
really is quite complex. First, it represents non-reversible 
dynamics. This results from the fact that passing through any 
wormhole, as defined by the 1-dimensional slow manifold, is 
not a reversible process. Thus, back in time journey through the 
wormhole will take a traveler to different globotoroid 
realizations.  

What makes (1) also challenging is its ability to create 
complex phase space behavior with a single loxodromic 
trajectory; the time dependent space variable solutions 
specified by one set of initial conditions {X0, Y0, Z0} form a 
single trajectory. This trajectory covers delicate phase space 
continuum created by the spheroid and toroid topologies 
stitched through by the wormhole [3]. As the wormhole is a 
tiny opening surrounding the 1-dimenssional manifold through 
which the entire 3-dimensional phase space solutions must 
pass, it forms the region that is quite challenging for numerical 
computations. Theoretically, as the wormhole shrinks with 
time and approaches the 1-dimenssional manifold, the 
globotoroid inflates to infinity. In reality this can never be 
achieved because anything that computes globotoroid solutions 
has a finite numerical resolution, and inflation to infinity is just 
a hypothetical concept. Thus, the computed solutions will be 
affected as the numerical resolution changes. A high numerical 
resolution promotes the globe expansion, while a low 
resolution chokes it, Fig. 1. Whereas in Fig. 1A) the core is 
clearly distinguishable from the globe, in 1B) this is not the 
case.  

The process of inflation will also depend on the integration 
step size △t. The finer the integration step, the more refined the 
solutions. A drawback is that by refining the step size, the 
number of integration steps increase, which in turn increases 
the computation time. Hence, the demand for more computer 
memory goes up, while the speed of computing goes down. 
Despite these computational issues the most comprehensive 
solver for studying the globotoroid models is the Euler method, 
and is used to evaluate the phase space portraits in Fig. 1. 

 

 

Figure 1.  The numerical resolution constraints.   

B. The 4
th

-Dimension 

From the model description presented it is apparent that the 
globotoroid defined in (1) has its wormhole aligned with the Z-
axes, which is orthogonal to the plane of action variables X and 
Y. Thus, for any globotoroid point i in Fig. 1A, the linear 
velocity vi at the time ti is expressed as  

vi
2
= vi,

2
 + vi,w

2
              (2) 

where vi,, or vi-perp, is the velocity component in the action 
plane perpendicular to the wormhole, and vi,w, or vi-worm, is 
the velocity component in the wormhole direction. In terms of 
the globotoroid variables (2) is expressed as 

vi = [(Xi-Xi-1)
2
 + (Yi-Yi-1)

2
 + (Zi-Zi-1)

2
]

1/2 
/(ti-ti-1)          (3) 

which for our model yields  

vi, = [(Xi-Xi-1)
2
 + (Yi-Yi-1)

2
]
1/2

 /(ti-ti-1)          (4a) 

and 

vi,w = [(Zi-Zi-1)
2
]

1/2 
/(ti-ti-1).           (4b) 

For the case when the wormhole is not aligned with the Z-
axis, vi-perp and vi-worm will have more complex expressions.  

Similarly, at the time ti+1 we will have the linear velocity 

vi+1 defined by vi+1, and vi+1,w, and so on. From this one can 
obtain the phase space velocity expression  

v(t) = (v(t)
2
 + vw(t)

2
)

1/2
 = vj(t-tj)           (5a) 

with, 

v(t) = vj,(t-tj)            (5b) 

being v(t)-perp, and     

vw(t) =  vj,w(t-tj)      for   j=1,…,n           (5c) 

v(t)-worm.  

v(t)-perp and v(t)-worm are two velocity components easily 
distinguishable by their action. v(t)-perp is defined by the 
action variables X(t) and Y(t) which diminish as their solutions 

circularly approach the wormhole, forcing v(t)0 along the 
path of the 1-dimensional manifold. In contrast, v(t)-worm 
never diminishes and keeps solutions moving along the 
wormhole direction. 

Now, let’s take a look at the 2-dimensional X,Y phase 
space with circular portrait defined by the constant radius 
R=(X

2
+Y

2
)

1/2
, and the angular frequency ω. Here the circular 

dynamics has the constant phase space velocity v(t)=Rω, and 
since there is no Z direction, v(t)-perp=v(t). The question is; 
Can ω in the globotoroid models be used to evaluate v(t)-perp 
defined in (5b)?  

The answer is yes, and to show this recall that for any 
globotoroid point Pj, vj-perp is in the plane orthogonal to the 
wormhole direction. Hence, we can always draw the 
orthogonal connection from any Pj to the center line (CL) 
emulating 1-dimensional manifold through the wormhole. This 
connection is depicted in Fig. 2 and represents the radius. 

 

Model II with initial conditions X0=.5, Y0=0 and Z0=2 and parameters ω=62.8 ; 

A=4.5 ; B=5 ; integration step Dt=0.002 ; total number of integration steps n=750K

numerical resolution=6-digitsnumerical resolution=24 digits

A) B)
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Figure 2.  The figure depicts radius Rj at the globotoroid point Pj. 

 

Rj = (Xj
2
+Yj

2
)
1/2

                 (6a) 

where Xj and Yj are the Pj coordinates, and where 

vj,= ωRj                  (6b) 

is vj-perp. Next, by observing that 

R(t)=Rjδ(t-tj) for    j=1,…,n            (7) 

and combining the result with (5b), we derive 

v(t)=ωR(t)              (8) 

which is analog of the circular motion expression. The 
solutions of (5b) and (8) are compared and illustrated in Fig. 3. 

What if now the point Pj acquires a constant mass M at the 
time tj, call it the inception time, and begins to follow the 
breadcrumb trail set up by the loxodromic path in Figure 2.  Pj 
is now a particle which at the inception time will expose two 
momenta;  

 

 

Figure 3.  The comparison of v(t)-perp evaluations. 

the linear momentum,  

pj,w=MVj,w             (9a) 

and the angular momentum,   

Lj= MRjVj,            (9b) 

where now Vj and Vj,w are respectively the particle linear Vj-
perp and Vj-worm, while Rj is given in (6a). While following 
the path the two momenta remain independent, and if there is 
no torque acting on Pj the momenta will be conserved 
throughout the entire globotoroid time. For the conserved 
linear momentum, (9a) implies 

p=MVj,w δ(t-tj),           (10a) 

and from (9b) the conserved angular momentum becomes 

L= M[RjVj,]δ(t-tj)   for all    j=1,…,n.       (10b) 

Since in (10a) p and M are constants, Vj,w must also be a 
constant such that 

Vw= Vj,w=M/p for all j=1,…,n.         (11a)  

Similarly, from (6b) and (10b) it follows that 

Vj,= L /MRj = Lω /(Mvj,) for    j=1,…,n                (11b) 

which relates the particle linear velocity Vj-perp inversely to 
the phase space linear velocity vj-perp. Finally, the particle 
V(t)-perp along the entire breadcrumb trail is  

V(t) = Vj,δ(t-tj)  for    j=1,…,n.          (12) 

Generally, for globotoroids Vw can be neglected as 

V(t)>>Vw. Thus, V(t)-perp becomes the dominant velocity 
which exposes particle spin and assigns energy state to each 
globotoroid cycle, and with that establishes the 4

th
-dimension. 

Without conservation of the angular momentum across the 
continuum of energy states this 4

th
-dimension is imperceptible.  

The 4-dimension concept may be better appreciated with video 
animations. To illustrate this point simulated behavior of the 
single and binary particles are presented in the following video: 
[https://youtu.be/yBo0CkbahLg]  [4].  

For another example on how V(t)-perp acts as the 4
th

-
dimensional variable consider the particle with mass M=1kg 

and the momentum L=1kg m
2
/s. From (11b) and (12) V(t) is 

computed and depicted in Fig. 4 as Log10[V(t)-perp]. The 
figure shows how the particle velocity slows at the globe, 
reaching minimum at the great circle, while it increases rapidly 
in the wormhole interior. The high energy states within the 
wormhole can support velocities in excess of the speed of light, 
but once particle is ejected onto the loxodromic orbit the speed 
slows down and the cycling resumes, Fig. 5A. Nonetheless, 
because the energy states continuum is preserved, all states 
containing velocities in excess of the speed of light will be 
inaccessible for any mass particle, Fig. 5B. This limits inflation 
and the size of the detectable globotoroid, Fig. 6, in the same 
way as resolution did in Fig. 1. Theoretically, however, 
massless particles have no such limitations. 

 

 

90o

Rjj

C L

time

time

v(
t)

-p
e

rp
so

lu
ti

on
s

v(
t)

-p
e

rp
so

lu
ti

on
s0

A)

B)

v(t)-perp for the entire 
solution in Figure 1A.

v(t)-perp for the last two cycles



International Journal of Science and Engineering Investigations, Volume 7, Issue 80, September 2018 142 

www.IJSEI.com            Paper ID: 78018-21 ISSN: 2251-8843 

 

Figure 4.  The comparison of v(t)-perp evaluations. 

 

When the globotoroid contains many mass particles, or the 
swarm, all mass points will spin around its geometry. If in 
addition, the swarm densely populates the globotoroid space 
the entire globotoroid appears to be spinning. The spin, 
however, will be nonuniform as the core will contain particles 
with higher velocities.  

 

III. DISCUSSION 

Before we get into any discussion it is important to mention 
that one needs a right set of tools to study globotoroid 
properties. Understanding of ODEs is a must, but not 
sufficient. To visualize and understand dynamics in 3-
dimensional spaces with static 2D graphs is tricky enough, and 
by adding the 4

th
-dimension this task becomes even more 

challenging.  

 

 

Figure 5.  High energy states and the 4th-dimension. 

 

 

Figure 6.  Mass effect on the globotoroid shape. 

 

For instance, a core formed by a single loxodromic 
trajectory is depicted in Fig. 7, and to fully understand its 
behavior one needs a 3D simulator with rotating and scaling 
capabilities. Without these capabilities there will be a great 
number of puzzling graphs to piece together. Both, 
Mathematica and Maple software programs [5,6] offer these 
features. Furthermore, globotoroids can generate interesting 
sound effects which can also be helpful. For audio effects one 
can use an open-source program Audacity [7]. In addition, 
producing globotoroid videos can be quite an educational 
experience.   

For now, as one looks at Fig. 7 a question arises: What if 
there are more trajectories? In this case each will show its 
loxodromic trail, and collectively they will braid the 
globotoroid phase space while never crossing each other paths. 
The final outcome may result into one big phase space spheroid 
blob.  

Next, suppose each trajectory contains its own mass swarm, 
and the core emerges as one very dense space spinning at a 
high angular velocity. At this point many interesting things can 
occur with matter and energy. For example, some of the 
decaying matter may end up entering higher energy states 
inside the wormhole, thereby creating powerful gamma ray and 
neutrino bursts. This familiar scenario has been reported for 
coalescing neutron stars [8,9,10]. Another example may occur 
when the core becomes so massive it devours all the matter in 

B)

A)

In purple are all V(t)-perp >3x108m/s.

In purple are all the energy states inaccessible by 
the detectable matter.

A) B)

A) B)

The globotoroid containing inaccessible energy states. The globotoroid without inaccessible energy states.
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its vicinity, making the core surrounding appear as a dark 
empty space [11,12]. This predatory act is part of the black 
hole behavior in which devouring is attributed to the powerful 
gravitational force.   

 

 

Figure 7.  A single loxodromic trajectory depicting core with its surrounding. 

 

We could go on with the examples from physics, quantum 
mechanics and cosmology, but the objective of this report is 
the 4

th
-dimension. It was reported how matter can expand the 

3-dimensional globotoroid space into the 4-dimensions, where 
the 4

th
-dimension results from the angular velocity, here 

referred as V(t)-perp. Together with the three globotoroid 
variables, V(t)-perp forms the 4-dimensional space which may 
offer a more intuitive alternative to the 4-dimensional space-
time continuum.  
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